The Role of Imagination in Science, Part 3

In previous posts (here and here), I argued that mathematics was a product of the human imagination, and that the test of mathematical creations was not how real they were but how useful or valuable they were.

Recently, Russian mathematician Edward Frenkel, in an interview in the Economist magazine, argued the contrary case.  According to Frenkel,

[M]athematical concepts and ideas exist objectively, outside of the physical world and outside of the world of consciousness.  We mathematicians discover them and are able to connect to this hidden reality through our consciousness.  If Leo Tolstoy had not lived we would never had known Anna Karenina.  There is no reason to believe that another author would have written that same novel.  However, if Pythagoras had not lived, someone else would have discovered exactly the same Pythagoras theorem.

Dr. Frenkel goes on to note that mathematical concepts don’t always match to physical reality — Euclidean geometry represents an idealized three-dimensional flat space, whereas our actual universe has curved space.  Nevertheless, mathematical concepts must have an objective reality because “these concepts transcend any specific individual.”

One problem with this argument is the implicit assumption that the human imagination is wholly individualistic and arbitrary, and that if multiple people come up with the same idea, this must demonstrate that the idea exists objectively outside the human mind.  I don’t think this assumption is valid.  It’s perfectly possible for the same idea to be invented by multiple people independently.  Surely if Thomas Edison never lived, someone else would have invented the light bulb.   Does that mean that the light bulb is not a true creation of the imagination, that it was not invented but always existed “objectively” before Edison came along and “discovered” it?  I don’t think so.  Likewise with modern modes of ground transportation, air transportation, manufacturing technology, etc.  They’re all apt to be imagined and invented by multiple people working independently; it’s just that laws on copyright and patent only recognize the first person to file.

It’s true that in other fields of human knowledge, such as literature, one is more likely to find creations that are truly unique.  Yes, Anna Karenina is not likely to be written by someone else in the absence of Tolstoy.  However, even in literature, there are themes that are universal; character names and specific plot developments may vary, but many stories are variations on the same theme.  Consider the following story: two characters from different social groups meet and fall in love; the two social groups are antagonistic toward each other and would disapprove of the love; the two lovers meet secretly, but are eventually discovered; one or both lovers die tragically.  Is this not the basic plot of multiple stories, plays, operas, and musicals going back two thousand years?

Dr. Frenkel does admit that not all mathematical concepts correspond to physical reality.  But if there is not a correspondence to something in physical reality, what does it mean to say that a mathematical concept exists objectively?  How do we prove something exists objectively if it is not in physical reality?

If one looks at the history of mathematics, there is an intriguing pattern in which the earliest mathematical symbols do indeed seem to point to or correspond to objects in physical reality; but as time went on and mathematics advanced, mathematical concepts became more and more creative and distant from physical reality.  These later mathematical concepts were controversial among mathematicians at first, but later became widely adopted, not because someone proved they existed, but because the concepts seemed to be useful in solving problems that could not be solved any other way.

The earliest mathematical concepts were the “natural numbers,” the numbers we use for counting (1, 2, 3 . . .).  Simple operations were derived from these natural numbers.  If I have two apples and add three apples, I end up with five apples.  However, the number zero was initially controversial — how can nothing be represented by something?  The ancient Greeks and Romans, for all of their impressive accomplishments, did not use zero, and the number zero was not adopted in Europe until the Middle Ages.

Negative numbers were also controversial at first.  How can one have “negative two apples” or a negative quantity of anything?  However, it became clear that negative numbers were indeed useful conceptually.  If I have zero apples and borrow two apples from a neighbor, according to my mental accounting book, I do indeed have “negative two apples,” because I owe two apples to my neighbor.  It is an accounting fiction, but it is a useful and valuable fiction.  Negative numbers were invented in ancient China and India, but were rejected by Western mathematicians and were not widely accepted in the West until the eighteenth century.

The set of numbers known explicitly as “imaginary numbers” was even more controversial, since it involved a quantity which, when squared, results in a negative number.  Since there is no known number that allows such an operation, the imaginary numbers were initially derided.  However, imaginary numbers proved to be such a useful conceptual tool in solving certain problems, they gradually became accepted.   Imaginary numbers have been used to solve problems in electric current, quantum physics, and envisioning rotations in three dimensions.

Professor Stephen Hawking has used imaginary numbers in his own work on understanding the origins of the universe, employing “imaginary time” in order to explore what it might be like for the universe to be finite in time and yet have no real boundary or “beginning.”  The potential value of such a theory in explaining the origins of the universe leads Professor Hawking to state the following:

This might suggest that the so-called imaginary time is really the real time, and that what we call real time is just a figment of our imaginations.  In real time, the universe has a beginning and an end at singularities that form a boundary to space-time and at which the laws of science break down.  But in imaginary time, there are no singularities or boundaries.  So maybe what we call imaginary time is really more basic, and what we call real is just an idea that we invent to help us describe what we think the universe is like.  But according to the approach I described in Chapter 1, a scientific theory is just a mathematical model we make to describe our observations: it exists only in our minds.  So it is meaningless to ask: which is real, “real” or “imaginary” time?  It is simply a matter of which is the more useful description.  (A Brief History of Time, p. 144.)

If you have trouble understanding this passage, you are not alone.  I have a hard enough time understanding imaginary numbers, let alone imaginary time.  The main point that I wish to underline is that even the best theoretical physicists don’t bother trying to prove that their conceptual tools are objectively real; the only test of a conceptual tool is if it is useful.

As a final example, let us consider one of the most intriguing of imaginary mathematical objects, the “hypercube.”  A hypercube is a cube that extends into additional dimensions, beyond the three spatial dimensions of an ordinary cube.  (Time is usually referred to as the “fourth dimension,” but in this case we are dealing strictly with spatial dimensions.)  A hypercube can be imagined in four dimensions, five dimensions, eight dimensions, twelve dimensions — in fact, there is no limit to the number of dimensions a hypercube can have, though the hypercube gets increasingly complex and eventually impossible to visualize as the number of dimensions increases.

Does a hypercube correspond to anything in physical reality?  Probably not.  While there are theories in physics that posit five, eight, ten, or even twenty-six spatial dimensions, these theories also posit that the additional spatial dimensions beyond our third dimension are curved up in very, very small spaces.  How small?  A million million million million millionth of an inch, according to Stephen Hawking (A Brief History of Time, p. 179).  So as a practical matter, hypercubes could exist only on the most minute scale.  And that’s probably a good thing, as Stephen Hawking points out, because in a universe with four fully-sized spatial dimensions, gravitational forces would become so sensitive to minor disturbances that planetary systems, stars, and even atoms would fly apart or collapse (pp. 180-81).

Dr. Frenkel would admit that hypercubes may not correspond to anything in physical reality.  So how do hypercubes exist?  Note that there is no limit to how many dimensions a hypercube can have.  Does it make sense to say that the hypercube consisting of exactly 32,458 dimensions exists objectively out there somewhere, waiting for someone to discover it?   Or does it make more sense to argue that the hypercube is an invention of the human imagination, and can have as many dimensions as can be imagined?  I’m inclined to the latter view.

Many scientists insist that mathematical objects must exist out there somewhere because they’ve been taught that a good scientist must be objective and dedicate him or herself to the discovery of things that exist independently of the human mind.  But there’re too many mathematical ideas that are clearly products of the human mind, and they’re too useful to abandon merely because they are products of the mind.

The Role of Imagination in Science, Part 2

In a previous posting, we examined the status of mathematical objects as creations of the human mind, not objectively existing entities.  We also discussed the fact that the science of geometry has expanded from a single system to a great many systems, with no single system being true.  So what prevents mathematics from falling into nihilism?

Many people seem to assume that if something is labeled as “imaginary,” it is essentially arbitrary or of no consequence, because it is not real.  If something is a “figment of imagination” or “exists only in your mind,” then it is of no value to scientific knowledge.  However, two considerations impose limits or restrictions on imagination that prevent descent into nihilism.

The first consideration is that even imaginary objects have properties that are real or unavoidable, once they are proposed.  In The Mathematical Experience, mathematics professors Philip J. Davis and Reuben Hersh argue that mathematics is the study of “true facts about imaginary objects.”  This may be a difficult concept to grasp (it took me a long time to grasp it), but consider some simple examples:

Imagine a circle in your mind.  Got that?  Now imagine a circle in which the radius of the circle is greater than the circumference of the circle.  If you are imagining correctly, it can’t be done.  Whether or not you know that the circumference of a circle is equal to twice the radius times pi, you should know that the circumference of a circle is always going to be larger than the radius.

Now imagine a right triangle.  Can you imagine a right triangle with a hypotenuse that is shorter than either of the two other sides?  No, whether or not you know the Pythagorean theorem, it’s in the very nature of a right triangle to have a hypotenuse that is longer than either of the two remaining sides.  This is what we mean by “true facts about imaginary objects.”  Once you specify an imagined object with certain basic properties, other properties follow inevitably from those initial, basic properties.

The second consideration that puts restrictions on the imagination is this: while it may be possible to invent an infinite number of mathematical objects, only a limited number of those objects is going to be of value.  What makes a mathematical object of value?  In fact, there are multiple criteria for valuing mathematical objects, some of which may conflict with each other.

The most important criterion of mathematical objects according to scientists is the ability to predict real-world phenomena.  Does a particular equation or model allow us to predict the motion of stars and planets; or the multiplication of life forms; or the growth of a national economy?  This ability to predict is a most powerful attribute of mathematics — without it, it is not likely that scientists would bother using mathematics at all.

Does the ability to predict real-world phenomena demonstrate that at least some mathematical objects, however imaginary, at least correspond to or model reality?  Yes — and no.  For in most cases it is possible to choose from a number of different mathematical models that are approximately equal in their ability to predict, and we are still compelled to refer to other criteria in choosing which mathematical object to use.  In fact, there are often tradeoffs when evaluating various criteria — often, so single mathematical object is best on all criteria.

One of the most important criteria after predictive ability is simplicity.  Although it has been demonstrated that Euclidean geometry is not the only type of geometry, it is still widely used because it is the simplest.  In general, scientists like to begin with the simplest model first; if that model becomes inadequate in predicting real-world events, they modify the model or choose a new one.  There is no point in starting with an unnecessarily complex geometry, and when one’s model gets too complex, the chance of error increases significantly.  In fact, simplicity is regarded as an important aspect of mathematical beauty — a mathematical proof that is excessively long and complicated is considered ugly, while a simple proof that provides answers with few steps is beautiful.

Another criterion for choosing one mathematical object over another is scope or comprehensiveness.  Does the mathematical object apply only in limited, specific circumstances?  Or does it apply broadly to phenomena, tying together multiple events under a single model?

There is also the criterion of fruitfulness.  Is the model going to provide many new research findings?  Or is it going to be limited to answering one or two questions, providing no basis for additional progress?

Ultimately, it’s impossible to get away from value judgments when evaluating mathematical objects.  Correspondence to reality cannot be the only value.  Why do we use the Hindu-Arabic numeral system today and not the Roman numeral system?  I don’t think it makes sense to say that the Hindu-Arabic system corresponds to reality more accurately than the Roman numeral system.  Rather, the Hindu-Arabic numeral system is easier to use for many calculations, and it is more powerful in obtaining useful results.  Likewise a base 10 numeral system doesn’t correspond to reality more accurately than a base 2 numeral system — it’s just easier for humans to use a base 10 system.  For computers, it is easier to use a base 2 system.  A base 60 system, such as the ancient Babylonians used, is more difficult for many calculations than a base 10, but it is more useful in measuring time and angles.  Why?  Because 60 has so many divisors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60) it can express fractions of units more simply, which is why we continue to use a modified version of base 60 for measuring time and angles (and geographic coordinates) to this day.

What about mathematical objects that don’t predict real world events or appear to model anything in reality at all?  This is the realm of pure mathematics, and some mathematicians prefer this realm to the realm of applied mathematics.  Do we make fun of pure mathematicians for wasting time on purely imaginary objects?  No, pure mathematics is still a form of knowledge, and mathematicians still seek beauty in mathematics.

Ultimately, imaginative knowledge is not arbitrary or inconsequential; there are real limits even for the imagination.  There may be an infinite number of mathematical systems that can be imagined, but only a limited number will be good.  Likewise, there is an infinite variety of musical compositions, paintings, and novels that can be created by the imagination, but only a limited number will be good, and only a very small number will be truly superb.  So even the imagination has standards, and these standards apply as much to the sciences as to the arts.

The Role of Imagination in Science, Part 1

In Zen and the Art of Motorcycle Maintenance, author Robert Pirsig argues that the basic conceptual tools of science, such as the number system, the laws of physics, and the rules of logic, have no objective existence, but exist in the human mind.  These conceptual tools were not “discovered” but created by the human imagination.  Nevertheless we use these concepts and invent new ones because they are good — they help us to understand and cope with our environment.

As an example, Pirsig points to the uncertain status of the number “zero” in the history of western culture.  The ancient Greeks were divided on the question of whether zero was an actual number – how could nothing be represented by something? – and did not widely employ zero.  The Romans’ numerical system also excluded zero.  It was only in the Middle Ages that the West finally adopted the number zero by accepting the Hindu-Arabic numeral system.  The ancient Greek and Roman civilizations did not neglect zero because they were blind or stupid.  If future generations adopted the use of zero, it was not because they suddenly discovered that zero existed, but because they found the number zero useful.

In fact, while mathematics appears to be absolutely essential to progress in the sciences, mathematics itself continues to lack objective certitude, and the philosophy of mathematics is plagued by questions of foundations that have never been resolved.  If asked, the majority of mathematicians will argue that mathematical objects are real, that they exist in some unspecified eternal realm awaiting discovery by mathematicians; but if you follow up by asking how we know that this realm exists, how we can prove that mathematical objects exist as objective entities, mathematicians cannot provide an answer that is convincing even to their fellow mathematicians.  For many decades, according to mathematicians Philip J. Davis and Reuben Hersh, the brightest minds sought to provide a firm foundation for mathematical truth, only to see their efforts founder (“Foundations , Found and Lost,” in The Mathematical Experience).

In response to these failures, mathematicians divided into multiple camps.  While the majority of mathematicians still insisted that mathematical objects were real, the school of fictionalism claimed that all mathematical objects were fictional.  Nevertheless, the fictionalists argued that mathematics was a useful fiction, so it was worthwhile to continue studying mathematics.  In the school of formalism, mathematics is described as a set of statements of the consequences of following certain rules of the game — one can create many “games,” and these games have different outcomes resulting from different sets of rules, but the games may not be about anything real.  The school of finitism argues that only the natural numbers (i.e., numbers for counting, such as 1, 2, 3. . . ) and numbers that can be derived from the natural numbers are real, all other numbers are creations of the human mind.  Even if one dismisses these schools as being only a minority, the fact that there is such stark disagreement among mathematicians about the foundations of mathematics is unsettling.

Ironically, as mathematical knowledge has increased over the years, so has uncertainty.  For many centuries, it was widely believed that Euclidean geometry was the most certain of all the sciences.  However, by the late nineteenth century, it was discovered that one could create different geometries that were just as valid as Euclidean geometry — in fact, it was possible to create an infinite number of valid geometries.  Instead of converging on a single, true geometry, mathematicians have seemingly gone into all different directions.  So what prevents mathematics from falling into complete nihilism, in which every method is valid and there are no standards?  This is an issue we will address in a subsequent posting.