What Are the Laws of Nature? – Part Two

In a previous post, I discussed the mysterious status of the “laws of nature,” pointing out that these laws seem to be eternal, omnipresent, and possessing enormous power to shape the universe, although they have no mass and no energy.

There is, however, an alternative view of the laws of nature proposed by thinkers such as Ronald Giere and Nancy Cartwright, among others. In this view, it is a fallacy to suppose that the laws of nature exist as objectively real entities — rather, what we call the laws of nature are simplified models that the human mind creates to explain and predict the operations of the universe. The laws were created by human beings to organize information about the cosmos. As such, the laws are not fully accurate descriptions of how the universe actually works, but generalizations; and like nearly all generalizations, there are numerous exceptions when the laws are applied to particular circumstances. We retain the generalizations because they excel at organizing and summarizing vast amounts of information, but we should never make the mistake of assuming that the generalizations are real entities. (See Science Without Laws and How the Laws of Physics Lie.)

Consider one of the most famous laws of nature, Isaac Newton’s law of universal gravitation. According to this law, the gravitational relationship between any two bodies in the universe is determined by the size (mass) of the two bodies and their distance from each other. More specifically, any two bodies in the universe attract each other with a force that is (1) directly proportional to the product of their masses and (2) inversely proportional to the square of the distance between them.  The equation is quite simple:

F = G \frac{m_1 m_2}{r^2}\

where F is the force between two masses, G is a gravitational constant, m1 and m2 are the masses of the two bodies and r is the distance between the center of the two bodies.

Newton’s law was quite valuable in helping predict the motions of the planets in our solar system, but in some cases the formula did not quite match to astronomical observations. The orbit of the planet Mercury in particular never fit Newton’s law, no matter how much astronomers tried to fiddle with the law to get the right results. It was only when Einstein introduced his theory of relativity that astronomers could correctly predict the motions of all the planets, including Mercury. Why did Einstein’s theory work better for Mercury? Because as the planet closest to the sun, Mercury is most affected by the massive gravitation of the sun, and Newton’s law becomes less accurate under the conditions of massive gravitation.

Einstein’s equations for gravity are known as the “field equations,” and although they are better at predicting the motions of the planets, they are extremely complex — too complex really for many situations. In fact, physicist Stephen Hawking has noted that scientists still often use Newton’s law of gravity because it is much simpler and a good enough approximation in most cases.

So what does this imply about the reality of Newton’s law of universal gravitation? Does Newton’s law float around in space or in some transcendent realm directing the motions of the planets, until the gravitation becomes too large, and then it hands off its duties to the Einstein field equations? No, of course not. Newton’s law is an approximation that works for many, but not all cases. Physicists use it because it is simple and “good enough” for most purposes. When the approximations become less and less accurate, a physicist may switch to the Einstein field equations, but this is a human value judgment, not the voice of nature making a decision to switch equations.

One other fact is worth noting: in Newton’s theory, gravity is a force between two bodies. In Einstein’s theory, gravity is not a real force — what we call a gravitational force is simply how we perceive the distortion of the space-time fabric caused by massive objects. Physicists today refer to gravity as a “fictitious force.” So why do professors of physics continue to use Newton’s law and teach this “fictitious force” law to their students? Because it is simpler to use and still a good enough approximation for most cases. Newton’s law can’t possibly be objectively real — if it is, Einstein is wrong.

The school of thought known as “scientific realism” would dispute these claims, arguing that even if the laws of nature as we know them are approximations, there are still real, objective laws underneath these approximations, and as science progresses, we are getting closer and closer to knowing what these laws really are. In addition, they argue that it would be absurd to suppose that we can possibly make progress in technology unless we are getting better and better in knowing what the true laws are really like.

The response of Ronald Giere and Nancy Cartwright to the realists is as follows: it’s a mistake to assume that if our laws are approximations and our approximations are getting better and better that therefore there must be real laws underneath. What if nature is inherently so complex in its causal variables and sequences that there is no objectively real law underneath it all? Nancy Cartwright notes that engineers who must build and maintain technological devices never apply the “laws of nature” directly to their work without a great deal of tinkering and modifications to get their mental models to match the specific details of their device. The final blueprint that engineers may create is a highly specific and highly complex model that is a precise match for the device, but of very limited generalizability to the universe as a whole. In other words, there is an inherent and unavoidable tradeoff between explanatory power and accuracy. The laws of nature are valued by us because they have very high explanatory power, but specific circumstances are always going to involve a mix of causal forces that refute the predictions of the general law. In order to understand how two bodies behave, you not only need to know gravity, you need to know the electric charge of the two bodies, the nuclear force, any chemical forces, the temperature, the speed of the objects, and additional factors, some of which can never be calculated precisely. According to Cartwright,

. . . theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not. I imagine that natural objects are much like people in societies. Their behavior is constrained by some specific laws and by a handful of general principles, but it is not determined in detail, even statistically. What happens on most occasions is dictated by no law at all. . . . God may have written just a few laws and grown tired. We do not know whether we are living in a tidy universe or an untidy one. (How the Laws of Physics Lie, p. 49)

Cartwright makes it clear that she believes in causal powers in nature — it’s just that causal powers are not the same as laws, which are simply general principles for organizing information.

Some philosophers and scientists would go even further. They argue that science is able to develop and improve models for predicting phenomena, but the underlying nature of reality cannot be grasped directly, even if our models are quite excellent at predicting. This is because there are always going to be aspects of nature that are non-observable and there are often multiple theories that can explain the same phenomenon. This school of thought is known as instrumentalism.

Stephen Hawking appears to be sympathetic to such a view. In a discussion of his use of “imaginary time” to model how the universe developed, Hawking stated “a scientific theory is just a mathematical model we make to describe our observations: it exists only in our minds. So it is meaningless to ask: which is real, “real” or “imaginary” time? It is simply a matter of which is the more useful description.” (A Brief History of Time, p. 144) In a later essay, Hawking made the case for what he calls “model-dependent realism.” He argues:

it is pointless to ask whether a model is real, only whether it agrees with observation. If two models agree with observation, neither one can be considered more real than the other. A person can use whichever model is more convenient in the situation under consideration. . . . Each theory may have its own version of reality, but according to model-dependent realism, that diversity is acceptable, and none of the versions can be said to be more real than any other.

Hawking concludes that given these facts, it may well be impossible to develop a unified theory of everything, that we may have to settle for a diversity of models. (It’s not clear to me how Hawking’s “model-dependent realism” differs from instrumentalism, since they seem to share many aspects.)

Intuitively, we are apt to conclude that our progress in technology is proof enough that we are understanding reality better and better, getting closer and closer to the Truth. But it’s actually quite possible for science to develop better and better predictive models while still retaining very serious doubts and disputes about many fundamental aspects of reality. Among physicists and cosmologists today, there is still disagreement on the following issues: are there really such things as subatomic particles, or are these entities actually fields, or something else entirely?; is the flow of time an illusion, or is time the chief fundamental reality?; are there an infinite number of universes in a wider multiverse, with infinite versions of you, or is this multiverse theory a mistaken interpretation of uncertainty at the quantum level?; are the constants of the universe really constant, or do they sometimes change?; are mathematical objects themselves the ultimate reality, or do they exist only in the mind? A number of philosophers of science have concluded that science does indeed progress by creating more and better models for predicting, but they make an analogy to evolution: life forms may be advancing and improving, but that doesn’t mean they are getting closer and closer to some final goal.

Referring back to my previous post, I discussed the view that the “laws of nature” appear to exist everywhere and have the awesome power to shape the universe and direct the motions of the stars and planets, despite the fact that the laws themselves have no matter and no energy. But if the laws of nature are creations of our minds, what then? I can’t prove that there are no real laws behind the mental models that we create. It seems likely that there must be some such laws, but perhaps they are so complex that the best we can do is create simplified models of them. Or perhaps we must acknowledge that the precise nature of the cosmological order is mysterious, and any attempt to understand and describe this order must use a variety of concepts, analogies, and stories created by our minds. Some of these concepts, analogies, and stories are clearly better than others, but we will never find one mental model that is a perfect fit for all aspects of reality.

2 thoughts on “What Are the Laws of Nature? – Part Two

  1. Pingback: What Does Science Explain? Part 1 – What is Causation? | Mythos/Logos

  2. Pingback: What Does Science Explain? Part 5 – The Ghostly Forms of Physics | Mythos/Logos

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s