What Does Science Explain? Part 4 – The Ends of the Universe

Continuing my series of posts on “What Does Science Explain?” (parts 1, 2 , and 3 here), I wish today to discuss the role of teleological causation. Aristotle referred to teleology in his discussion of four causes as “final causation,” because it referred to the goals or ends of all things (the Greek word “telos” meaning “goal,” “purpose,” or “end.”) From a teleological viewpoint, an acorn grows into an oak tree, a bird takes flight, and a sculptor creates statues because these are the inherent and intended ends of the acorn, bird, and sculptor. Medieval metaphysics granted a large role for teleological causation in its view of the universe.

According to E.A. Burtt in The Metaphysics of Modern Science, the growth of modern science changed the idea of causation, focusing almost exclusively on efficient causation (objects impacting or affecting other objects). The idea of final (goal-oriented) causation was dismissed. And even though the early modern scientists such as Galileo and Newton believed in God, their notion of God was significantly different from the traditional medieval conception of God. Rather than seeing God as the Supreme Good, which continually draws all things to higher levels of being, early modern scientists reduced God to the First Efficient Cause, who merely started the mechanism of the universe and then let it run.

It was not unreasonable for early scientists to focus on efficient causation rather than final causation. It was often difficult to come up with testable hypotheses and workable predictive models by assuming long-term goals in nature. There was always a strong element of mystery about what the true ends of nature were and it was very difficult to pin down these alleged goals. Descartes believed in God, but also wrote that it was impossible to know what God’s goals were. For that reason, it is quite likely that science in its early stages needed to overcome medieval metaphysics in order to make its first great discoveries about nature. Focusing on efficient causation was simpler and apt to bring quicker results.

However, now that science has advanced over the centuries, it is worth revisiting the notion of teleological causation as a means of filling in gaps in our current understanding of nature. It is true that the concept of long-term goals for physical objects and forces often does not help very much in terms of developing useful, short-term predictive models. But final causation can help make sense of long-term patterns which may not be apparent when making observations over short periods of time. Processes that look purposeless and random in the short-term may actually be purposive in the long-term. We know that an acorn under the right conditions will eventually become an oak tree, because the process and the outcome of development can be observed within a reasonable period of time and that knowledge has been passed on to us. If our knowledge base began at zero and we came across an acorn for the first time, we would find it extremely difficult to predict the long-term future of that acorn merely by cutting it up and examining it under a microscope.

So, does the universe have long-term, goal-oriented patterns that may be hidden among the short-term realities of contingency and randomness? A number of physicists began to speculate that this was the case in the late twentieth century, when their research indicated that the physical forces and constants of the universe can exist in only a very narrow range of possibilities in order for life to be possible, or even for the universe to exist. Change in even one of the forces or constants could make life impossible or cause the universe to self-destruct in a short period of time. In this view, the evolution of the universe and of life on earth has been subject to a great deal of randomness, but the cosmic structure and conditions that made evolution possible are not at all random. As the physicist Freeman Dyson has noted:

It is true that we emerged in the universe by chance, but the idea of chance is itself only a cover for our ignorance. . . . The more I examine the universe and study the details of its architecture, the more evidence I find that the universe in some sense must have known that we were coming. (Disturbing the Universe, p. 250)

In what way did the universe “know we were coming?” Consider the fact that in the early universe after the Big Bang, the only elements that existed were the “light” elements hydrogen and helium, along with trace amounts of lithium and beryllium. A universe with only four elements would certainly be simple, but there would not be much to build upon. Life, at least as we know it, requires not just hydrogen but at a minimum carbon, oxygen, nitrogen, phosphorus, and sulfur. How did these and other heavier elements come into being? Stars produced them, through the process of fusion. In fact, stars have been referred to as the “factories” of heavy elements. Human beings today consist primarily of oxygen, followed by carbon, hydrogen, nitrogen, calcium, and phosphorous. Additional elements compose less than one percent of the human body, but even most of these elements are essential to human life. Without the elements produced earlier by stars we would not be here. It has been aptly said that human beings are made of “stardust.”

So why did stars create the heavier elements? After all, the universe could have gotten along quite well without additional elements. Was it random chance that created the heavy elements? Not really. Random chance plays a role in many natural events, but the creation of heavy elements in stars requires some precise conditions — it is not just a churning jumble of subatomic particles. The astronomer Fred Hoyle was the first scientist to study how stars made heavy elements, and he noted that the creation of heavy elements required very specific values in order for the process to work. When he concluded his research Hoyle remarked, “A common sense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as with chemistry and biology, and that there are no blind forces worth speaking about in nature. The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.”

The creation of heavier elements by the stars does not necessarily mean that the universe intended specifically to create human beings, but it does seem to indicate that the universe somehow “knew” that heavy elements would be required to create higher forms of being, above and beyond the simple and primitive elements created by the Big Bang. In that sense, creating life is plausibly a long-term goal of the universe.

And what about life itself? Does it make sense to use teleology to study the behavior of life forms? Biologist Peter Corning has argued that while science has long pursued reductionist explanations of phenomena, it is impossible to really know biological systems without pursuing holistic explanations centered on the purposive behavior of organisms.

According to reductionism, all things can be explained by the parts that they are made of — human beings are made of tissues and organs, which are made of cells, which are made of chemical compounds, which are made of atoms, which are made of subatomic particles. In the view of many scientists, everything about human beings can in principle be explained by actions at the subatomic level. Peter Corning, however, argues that this conception is mistaken. Reductionism is necessary for partially explaining biological systems, but it is not sufficient. The reason for this is that the wholes are greater than the parts, and the behavior of wholes often has characteristics that are radically different from the parts that they are made of. For example, it would be dangerous to add pure hydrogen or oxygen to a fire, but when hydrogen atoms and oxygen atoms are combined in the right way — as H2O — one obtains a chemical compound that is quite useful for extinguishing fires. The characteristics of the molecule are different from the characteristics of the atoms in it. Likewise, at the subatomic level, particles may have no definite position in space and can even be said to exist in multiple places at once; but human beings only exist in one place at a time, despite the fact that human beings are made of subatomic particles. The behavior of the whole is different from the behavior of the parts. The transformation of properties that occurs when parts form new wholes is known as “emergence.”

Corning notes that when one incorporates analysis of wholes into theoretical explanation, there is goal-oriented “downward causation” as well as “upward causation.” For example, a bird seeks the goal of food and a favorable environment, so when it begins to get cold, that bird flies thousands of miles to a warmer location for the winter. The atoms that make up that bird obviously go along for the ride, but a scientist can’t use the properties of the atoms to predict the flight of these atoms; only by looking at the properties of the bird as a whole can a scientist predict what the atoms making up the bird are going to do. The bird as a whole doesn’t have complete control over the atoms composing its body, but it clearly has some control. Causation goes down as well as up. Likewise, neuropsychologist Roger Sperry has argued that human consciousness is a whole that influences the parts of the brain and body just as the parts of the brain and body influence the consciousness: “[W]e contend that conscious or mental phenomena are dynamic, emergent, pattern (or configurational) properties of the living brain in action . . . these emergent pattern properties in the brain have causal control potency. . . ” (“Mind, Brain, and Humanist Values,” Bulletin of the Atomic Scientists, Sept 1966) In Sperry’s view, the values created by the human mind influence human behavior as much as the atoms and chemicals in the human body and brain.

Science has traditionally viewed the evolution of the universe as upward causation only, with smaller parts joining into larger wholes as a result of the laws of nature and random chance. This view of causation is illustrated in the following diagram:

reductionism

But if we take seriously the notion of emergence and purposive action, we have a more complex picture, in which the laws of nature and random chance constrain purposive action and life forms, but do not entirely determine the actions of life forms — i.e., there is both upward and downward causation:

reductionism_and_holism

It is important to note that this new view of causation does not eliminate the laws of nature — it just sets limits on what the laws of nature can explain. Specifically, the laws of nature have their greatest predictive power when we are dealing with the simplest physical phenomena; the complex wholes that are formed by the evolutionary process are less predictable because they can to some extent work around the laws of nature by employing the new properties that emerge from the joining of parts. For example, it is relatively easy to predict the motion of objects in the solar system by using the laws of nature; it is not so easy to predict the motion of life forms because life forms have properties that go beyond the simple properties possessed by objects in the solar system. As Robert Pirsig notes in Lila, life can practically be defined by its ability to transcend or work around the static patterns of the laws of nature:

The law of gravity . . . is perhaps the most ruthlessly static pattern of order in the universe. So, correspondingly, there is no single living thing that does not thumb its nose at that law day in and day out. One could almost define life as the organized disobedience of the law of gravity. One could show that the degree to which an organism disobeys this law is a measure of its degree of evolution. Thus, while the single protozoa just barely get around on their cilia, earthworms manage to control their distance and direction, birds fly into the sky, and man goes all the way to the moon. (Lila (1991), p. 143.

Many scientists still resist the notion of teleological causation. But it could be argued that even scientists who vigorously deny that there is any purpose in the universe actually have an implicit teleology. Their teleology is simply the “laws of nature” themselves, and either the inner goal of all things is to follow those laws, or it is the goal of the laws to compel all things to follow their commands. Other implicit teleologies can be found in scientists’ assumptions that nature is inherently simple; that mathematics is the language of nature; or that all the particles and forces in the nature play some necessary role. According to physicist Paul Davies,

There is . . . an unstated but more or less universal feeling among physicists that everything that exists in nature must have a ‘place’ or a role as part of some wider scheme, that nature should not indulge in profligacy by manifesting gratuitous entities, that nature should not be arbitrary. Each facet of physical reality should link in with the others in a ‘natural’ and logical way. Thus, when the particle known as the muon was discovered in 1937, the physicist Isidor Rabi was astonished. ‘Who ordered that?’ he exclaimed. (Paul Davies, The Mind of God: The Scientific Basis for a Rational World, pp. 209-10.

Ultimately, however, one cannot fully discuss the goals or ends of the universe without exploring the notion of Ideal Forms — that is, a blueprint for all things to follow or aspire to. The subject of Ideal Forms will be discussed in my next post.

Einstein’s Judeo-Quaker Pantheism

I recently came across a fascinating website, Einstein: Science and Religion, which I hope you will find time to peruse.  The website, edited by Arnold Lesikar, Professor Emeritus in the  Department of Physics, Astronomy, and Engineering Science at St. Cloud State University in Minnesota, contains a collection of Einstein’s various comments on religion, God, and the relationship between science and religion.

Einstein’s views on religion have been frequently publicized and commented on, but it is difficult to get an accurate and comprehensive assessment of Einstein’s actual views on religion because of the tendency of both believers and atheists to cherry-pick particular quotations or to quote out of context. Einstein’s actual views on religion are complex and multifaceted, and one is apt to get the wrong impression by focusing on just one or several of Einstein’s comments.

One should begin by noting that Einstein did not accept the notion of a personal God, an omnipotent superbeing who listens to our prayers and intervenes in the operations of the laws of the universe. Einstein repeatedly rejected this notion of God throughout his life, from his adolescence to old age. He also believed that many, if not most, of the stories in the Bible were untrue.

The God Einstein did believe in was the God of the philosopher Spinoza. Spinoza conceived of God as being nothing more than the natural order underlying this universe — this order was fundamentally an intelligent order, but it was a mistake to conceive of God as having a personality or caring about man. Spinoza’s view was known as pantheism, and Einstein explicitly stated that he was a proponent of Spinoza and of pantheism. Einstein also argued that ethical systems were a purely human concern, with no superhuman authority figure behind them, and there was no afterlife in which humans could be rewarded or punished. In fact, Einstein believed that immortality was undesirable anyway. Finally, Einstein sometimes expressed derogatory views of religious institutions and leaders, believing them responsible for superstition and bigotry among the masses.

However, it should also be noted that Einstein’s skepticism and love of truth was too deep to result in a rigid and dogmatic atheism. Einstein described himself variously as an agnostic or pantheist and disliked the arrogant certainty of atheists. He even refused to definitively reject the idea of a personal God, believing that there were too many mysteries behind the universe to come to any final conclusions about God. He also wrote that he did not want to destroy the idea of a personal God in the minds of the masses, because even a primitive metaphysics was better than no metaphysics at all.

Even while rejecting the notion of a personal God, Einstein described God as a spirit, a spirit with the attribute of thought or intelligence: “[E]very one who is seriously involved in the pursuit of science becomes convinced that a spirit is manifest in the laws of the Universe — a spirit vastly superior to that of man, and one in the face of which we with our modest powers must feel humble.” In an interview, Einstein expressed a similar view:

If there is any such concept as a God, it is a subtle spirit, not an image of a man that so many have fixed in their minds. In essence, my religion consists of a humble admiration for this illimitable superior spirit that reveals itself in the slight details that we are able to perceive with our frail and feeble minds.

Distinguishing between the religious feeling of the “naïve man” and the religious feeling of the scientist, Einstein argued:  “[The scientist’s] religious feeling takes the form of a rapturous amazement at the harmony of natural law, which reveals an intelligence of such superiority that, compared with it, all the systematic thinking and acting of human beings is an utterly insignificant reflection.”

While skeptical and often critical of religious institutions, Einstein also believed that religion played a valuable and necessary role for civilization in creating “superpersonal goals” for human beings, goals above and beyond self-interest, that could not be established by pure reason.  Reason could provide us with the facts of existence, said Einstein, but the question of how we should live our lives necessarily required going beyond reason. According to Einstein:

[T]he scientific method can teach us nothing else beyond how facts are related to, and conditioned by, each other.The aspiration toward such objective knowledge belongs to the highest of which man is capabIe, and you will certainly not suspect me of wishing to belittle the achievements and the heroic efforts of man in this sphere. Yet it is equally clear that knowledge of what is does not open the door directly to what should be. . . . Objective knowledge provides us with powerful instruments for the achievements of certain ends, but the ultimate goal itself and the longing to reach it must come from another source. . . .

To make clear these fundamental ends and valuations, and to set them fast in the emotional life of the individual, seems to me precisely the most important function which religion has to perform in the social life of man. And if one asks whence derives the authority of such fundamental ends, since they cannot be stated and justified merely by reason, one can only answer: they exist in a healthy society as powerful traditions, which act upon the conduct and aspirations and judgments of the individuals; they are there, that is, as something living, without its being necessary to find justification for their existence. They come into being not through demonstration but through revelation, through the medium of powerful personalities. One must not attempt to justify them, but rather to sense their nature simply and clearly.

Einstein even argued that the establishment of moral goals by religious prophets was one of the most important accomplishments of humanity, eclipsing even scientific accomplishment:

Our time is distinguished by wonderful achievements in the fields of scientific understanding and the technical application of those insights. Who would not be cheered by this? But let us not forget that knowledge and skills alone cannot lead humanity to a happy and dignified life. Humanity has every reason to place the proclaimers of high moral standards and values above the discoverers of objective truth. What humanity owes to personalities like Buddha, Moses, and Jesus ranks for me higher than all the achievements of the enquiring and constructive mind.

Einstein’s views of Jesus are particularly intriguing. Einstein never rejected his Jewish identity and refused all attempts by others to convert him to Christianity. Einstein also refused to believe the stories of Jesus’s alleged supernatural powers. But Einstein also believed the historical existence of Jesus was a fact, and Einstein regarded Jesus as one the greatest — if not the greatest — of religious prophets:

As a child, I received instruction both in the Bible and in the Talmud. I am a Jew, but I am enthralled by the luminous figure of the Nazarene. . . . No one can read the Gospels without feeling the actual presence of Jesus. His personality pulsates in every word. No myth is filled with such life. How different, for instance, is the impression which we receive from an account of legendary heroes of antiquity like Theseus. Theseus and other heroes of his type lack the authentic vitality of Jesus. . . .No man can deny the fact that Jesus existed, nor that his sayings are beautiful. Even if some them have been said before, no one has expressed them so divinely as he.

Toward the end of his life, Einstein, while remaining Jewish, expressed great admiration for the Christian sect known as the Quakers. Einstein stated that the “Society of Friends,” as the Quakers referred to themselves as, had the “highest moral standards” and their influence was “very beneficial.” Einstein even declared “If I were not a Jew I would be a Quaker.”

Now Einstein’s various pronouncements on religion are scattered in multiple sources, so it is not surprising that people may get the wrong impression from examining just a few quotes. Sometimes stories of Einstein’s religious views are simply made up, implying that Einstein was a traditional believer. Other times, atheists will emphasize Einstein’s rejection of a personal God, while completely overlooking Einstein’s views on the limits of reason, the necessity of religion in providing superpersonal goals, and the value of the religious prophets.

For some people, a religion without a personal God is not a true religion. But historically, a number of major religions do not hold belief in a personal God as central to their belief system, including Taoism, Buddhism, and Confucianism. In addition, many theologians in monotheistic faiths describe God in impersonal terms, or stress that the attributes of God may be represented symbolically as personal, but that God himself cannot be adequately described as a person. The great Jewish theologian Maimonides argued that although God had been described allegorically and imperfectly by the prophets as having the attributes of a personal being, God did not actually have human thoughts and emotions. The twentieth century Christian theologian Paul Tillich argued that God was not “a being” but the “Ground of Being” or the “Power of Being” existing in all things.

However, it is somewhat odd is that while rejecting the notion of a personal God, Einstein saw God as a spirit that seemingly possessed an intelligence far greater than that of human beings. In that, Einstein was similar to Spinoza, who believed God had the attribute of “thought” and that the human mind was but part of the “infinite intellect of God.”  But is not intelligence a quality of personal beings? In everyday life, we don’t think of orbiting planets or stars or rocks or water as possessing intelligence, and even if we attribute intelligence to lower forms of life such as bacteria and plants, we recognize that this sort of intelligence is primitive. If you ask people what concrete, existing things best possess the quality of intelligence, they will point to humans — personal beings! Yet, both Spinoza and Einstein attribute vast, or even infinite, intelligence to God, while denying that God is a personal being!

I am not arguing that Spinoza and Einstein were wrong or somehow deluding themselves when they argued that God was not a personal being. I am simply pointing out how difficult it is to adequately and accurately describe God. I think Spinoza and Einstein were correct in seeking to modify the traditional concept of God as a type of omnipotent superperson with human thoughts and emotions. But at the same time, it can be difficult to describe God in a way that does not use attributes that are commonly thought of as belonging to personal beings. At best, we can use analogies from everyday experience to indirectly describe God, while acknowledging that all analogies fall short.

Ironically, some of the deepest and most contentious issues in science today revolve around the use of certain concepts and analogies in describing physical entities, often on the subatomic level, that we cannot directly observe and that behave in bizarre ways completely outside of our normal experiences. But that is a subject for another day.

What Are the Laws of Nature? – Part Two

In a previous post, I discussed the mysterious status of the “laws of nature,” pointing out that these laws seem to be eternal, omnipresent, and possessing enormous power to shape the universe, although they have no mass and no energy.

There is, however, an alternative view of the laws of nature proposed by thinkers such as Ronald Giere and Nancy Cartwright, among others. In this view, it is a fallacy to suppose that the laws of nature exist as objectively real entities — rather, what we call the laws of nature are simplified models that the human mind creates to explain and predict the operations of the universe. The laws were created by human beings to organize information about the cosmos. As such, the laws are not fully accurate descriptions of how the universe actually works, but generalizations; and like nearly all generalizations, there are numerous exceptions when the laws are applied to particular circumstances. We retain the generalizations because they excel at organizing and summarizing vast amounts of information, but we should never make the mistake of assuming that the generalizations are real entities. (See Science Without Laws and How the Laws of Physics Lie.)

Consider one of the most famous laws of nature, Isaac Newton’s law of universal gravitation. According to this law, the gravitational relationship between any two bodies in the universe is determined by the size (mass) of the two bodies and their distance from each other. More specifically, any two bodies in the universe attract each other with a force that is (1) directly proportional to the product of their masses and (2) inversely proportional to the square of the distance between them.  The equation is quite simple:

F = G \frac{m_1 m_2}{r^2}\

where F is the force between two masses, G is a gravitational constant, m1 and m2 are the masses of the two bodies and r is the distance between the center of the two bodies.

Newton’s law was quite valuable in helping predict the motions of the planets in our solar system, but in some cases the formula did not quite match to astronomical observations. The orbit of the planet Mercury in particular never fit Newton’s law, no matter how much astronomers tried to fiddle with the law to get the right results. It was only when Einstein introduced his theory of relativity that astronomers could correctly predict the motions of all the planets, including Mercury. Why did Einstein’s theory work better for Mercury? Because as the planet closest to the sun, Mercury is most affected by the massive gravitation of the sun, and Newton’s law becomes less accurate under the conditions of massive gravitation.

Einstein’s equations for gravity are known as the “field equations,” and although they are better at predicting the motions of the planets, they are extremely complex — too complex really for many situations. In fact, physicist Stephen Hawking has noted that scientists still often use Newton’s law of gravity because it is much simpler and a good enough approximation in most cases.

So what does this imply about the reality of Newton’s law of universal gravitation? Does Newton’s law float around in space or in some transcendent realm directing the motions of the planets, until the gravitation becomes too large, and then it hands off its duties to the Einstein field equations? No, of course not. Newton’s law is an approximation that works for many, but not all cases. Physicists use it because it is simple and “good enough” for most purposes. When the approximations become less and less accurate, a physicist may switch to the Einstein field equations, but this is a human value judgment, not the voice of nature making a decision to switch equations.

One other fact is worth noting: in Newton’s theory, gravity is a force between two bodies. In Einstein’s theory, gravity is not a real force — what we call a gravitational force is simply how we perceive the distortion of the space-time fabric caused by massive objects. Physicists today refer to gravity as a “fictitious force.” So why do professors of physics continue to use Newton’s law and teach this “fictitious force” law to their students? Because it is simpler to use and still a good enough approximation for most cases. Newton’s law can’t possibly be objectively real — if it is, Einstein is wrong.

The school of thought known as “scientific realism” would dispute these claims, arguing that even if the laws of nature as we know them are approximations, there are still real, objective laws underneath these approximations, and as science progresses, we are getting closer and closer to knowing what these laws really are. In addition, they argue that it would be absurd to suppose that we can possibly make progress in technology unless we are getting better and better in knowing what the true laws are really like.

The response of Ronald Giere and Nancy Cartwright to the realists is as follows: it’s a mistake to assume that if our laws are approximations and our approximations are getting better and better that therefore there must be real laws underneath. What if nature is inherently so complex in its causal variables and sequences that there is no objectively real law underneath it all? Nancy Cartwright notes that engineers who must build and maintain technological devices never apply the “laws of nature” directly to their work without a great deal of tinkering and modifications to get their mental models to match the specific details of their device. The final blueprint that engineers may create is a highly specific and highly complex model that is a precise match for the device, but of very limited generalizability to the universe as a whole. In other words, there is an inherent and unavoidable tradeoff between explanatory power and accuracy. The laws of nature are valued by us because they have very high explanatory power, but specific circumstances are always going to involve a mix of causal forces that refute the predictions of the general law. In order to understand how two bodies behave, you not only need to know gravity, you need to know the electric charge of the two bodies, the nuclear force, any chemical forces, the temperature, the speed of the objects, and additional factors, some of which can never be calculated precisely. According to Cartwright,

. . . theorists tend to think that nature is well-regulated; in the extreme, that there is a law to cover every case. I do not. I imagine that natural objects are much like people in societies. Their behavior is constrained by some specific laws and by a handful of general principles, but it is not determined in detail, even statistically. What happens on most occasions is dictated by no law at all. . . . God may have written just a few laws and grown tired. We do not know whether we are living in a tidy universe or an untidy one. (How the Laws of Physics Lie, p. 49)

Cartwright makes it clear that she believes in causal powers in nature — it’s just that causal powers are not the same as laws, which are simply general principles for organizing information.

Some philosophers and scientists would go even further. They argue that science is able to develop and improve models for predicting phenomena, but the underlying nature of reality cannot be grasped directly, even if our models are quite excellent at predicting. This is because there are always going to be aspects of nature that are non-observable and there are often multiple theories that can explain the same phenomenon. This school of thought is known as instrumentalism.

Stephen Hawking appears to be sympathetic to such a view. In a discussion of his use of “imaginary time” to model how the universe developed, Hawking stated “a scientific theory is just a mathematical model we make to describe our observations: it exists only in our minds. So it is meaningless to ask: which is real, “real” or “imaginary” time? It is simply a matter of which is the more useful description.” (A Brief History of Time, p. 144) In a later essay, Hawking made the case for what he calls “model-dependent realism.” He argues:

it is pointless to ask whether a model is real, only whether it agrees with observation. If two models agree with observation, neither one can be considered more real than the other. A person can use whichever model is more convenient in the situation under consideration. . . . Each theory may have its own version of reality, but according to model-dependent realism, that diversity is acceptable, and none of the versions can be said to be more real than any other.

Hawking concludes that given these facts, it may well be impossible to develop a unified theory of everything, that we may have to settle for a diversity of models. (It’s not clear to me how Hawking’s “model-dependent realism” differs from instrumentalism, since they seem to share many aspects.)

Intuitively, we are apt to conclude that our progress in technology is proof enough that we are understanding reality better and better, getting closer and closer to the Truth. But it’s actually quite possible for science to develop better and better predictive models while still retaining very serious doubts and disputes about many fundamental aspects of reality. Among physicists and cosmologists today, there is still disagreement on the following issues: are there really such things as subatomic particles, or are these entities actually fields, or something else entirely?; is the flow of time an illusion, or is time the chief fundamental reality?; are there an infinite number of universes in a wider multiverse, with infinite versions of you, or is this multiverse theory a mistaken interpretation of uncertainty at the quantum level?; are the constants of the universe really constant, or do they sometimes change?; are mathematical objects themselves the ultimate reality, or do they exist only in the mind? A number of philosophers of science have concluded that science does indeed progress by creating more and better models for predicting, but they make an analogy to evolution: life forms may be advancing and improving, but that doesn’t mean they are getting closer and closer to some final goal.

Referring back to my previous post, I discussed the view that the “laws of nature” appear to exist everywhere and have the awesome power to shape the universe and direct the motions of the stars and planets, despite the fact that the laws themselves have no matter and no energy. But if the laws of nature are creations of our minds, what then? I can’t prove that there are no real laws behind the mental models that we create. It seems likely that there must be some such laws, but perhaps they are so complex that the best we can do is create simplified models of them. Or perhaps we must acknowledge that the precise nature of the cosmological order is mysterious, and any attempt to understand and describe this order must use a variety of concepts, analogies, and stories created by our minds. Some of these concepts, analogies, and stories are clearly better than others, but we will never find one mental model that is a perfect fit for all aspects of reality.

Objectivity is Not Scientific

It is a common perception that objectivity is a virtue in the pursuit of knowledge, that we need to know things as they really are, independent of our mental conceptions and interpretations.  It is also a common perception that science is the form of knowledge that is the most objective, and that is why scientific knowledge makes the most progress.

Yet the principle of objectivity immediately runs into problems in the most famous scientific theory, Einstein’s theory of relativity.  According to relativity theory, there is no objective way to measure objects in space and time — these measures are always relative to observers depending on what velocity the objects and observers are travelling, and observers often end up with different measures for the same object as a result.  For example, objects travelling at a very high speed will appear to be shorter in length to outside observers that are parallel to the path of the object, a phenomenon known as length contraction.  In addition, time will move more slowly for an observer travelling at high speed than an observer travelling at a low speed.  This phenomenon is illustrated in the “twin paradox” — given a pair of twins, if one sets off in a high speed rocket, while the other stays on earth, the twin on the rocket will have aged more slowly than the twin on earth.  Finally, the sequence of two spatially-separated events, say Event A and Event B, will differ according to the position and velocity of the observer.  Some observers may see Event A occurring before Event B, others may see Event B occurring before Event A, and others will see the two events as simultaneous.  There is no objectively true sequence of events.

The theory of relativity does not say that everything is relative.  The speed of light, for example, is the same for all observers, whether they are moving at a fast speed toward a beam of light or away from a beam of light.  In fact, it was the absolute nature of light speed for all moving observers that led Einstein to conclude that time itself must be different for different observers.  In addition, for any two events that are causally-connected, the events must take place in the same sequence for all observers.  In other words, if Event A causes Event B, Event A must precede Event B for all observers.  So relativity theory sees some phenomena as different for different observers and others as the same for different observers.

Finally, the meaning of relativity in science is not that one person’s opinion is just as valid as anyone else’s.  Observers within the same frame of reference (say, multiple observers travelling together in the same vehicle) should agree on measurements of length and time for an outside object even if observers from other reference frames have different results.  If observers within the same vehicle don’t agree, then something is wrong — perhaps someone is misperceiving, or misinterpreting, or something else is wrong.

Nevertheless, if one accepts the theory of relativity, and this theory has been accepted by scientists for many decades now, one has to accept the fact that there is no objective measure of objects in space and time — it is entirely observer-dependent.  So why do many cling to the notion of objectivity as a principle of knowledge?

Historically, the goal of objectivity was proposed as a way to solve the problem of subjective error.  Individual subjects have imperfect perceptions and interpretations.  What they see and claim is fallible.  The principle of objectivity tries to overcome this problem by proposing that we need to evaluate objects as they are in themselves, in the absence of human mind.  The problem with this principle is that we can’t really step outside of our bodies and minds and evaluate an object.

So how do we overcome the problem of subjective error?  The solution is not to abandon mind, but to supplement it, by communicating with other minds, checking for individual error by seeing if others are getting different results, engaging in dialogue, and attempting to come to a consensus.  Observations and experiments are repeated many times by many different people before conclusions are established.  In this view, knowledge advances by using the combined power of thousands and thousands of minds, past and present.  It is the only way to ameliorate the problem of an incorrect relationship between subject and object and making that relationship better.

In the end, all knowledge, including scientific knowledge, is essentially and unalterably about the relationship between subjects and objects — you cannot find true knowledge by splitting objects from subjects any more than you can split H2O into its individual atoms of hydrogen and oxygen and expect to find water in the component parts.