Beyond the “Mechanism” Metaphor in Physics

In previous posts, I discussed the use of the “mechanism” metaphor in science. I argued that this metaphor was useful historically in helping us to make progress in understanding cause-and-effect patterns in nature, but was limited or even deceptive in a number of important respects. In particular, the field of biology is characterized by evidence of spontaneity, adaptability, progress, and cooperative behavior among life forms that make the mechanism metaphor inadequate in characterizing and explaining life.

Physics is widely regarded as the pinnacle of the “hard sciences” and, as such, the field most suited to the mechanism metaphor. In fact, many physicists are so wedded to the idea of the universe as a mechanism, that they are inclined to speak as if the universe literally was a mechanism, that we humans are actually living inside a computer simulation. Why alien races would go through the trouble of creating simulated humans such as ourselves, with such dull, slow-moving lives, is never explained. But physicists are able to get away with these wild speculations because of their stupendous success in explaining and predicting the motion and actions of objects, from the smallest particles to the largest galaxies.

Fundamental to the success of physics is the idea that all objects are subject to laws that determine their behavior. Laws are what determine how the various parts of the universal mechanism move and interact. But when one starts asking questions about what precisely physical laws are and where they come from, one runs into questions and controversies that have never been successfully resolved.

Prior to the Big Bang theory, developed in the early twentieth century, the prevailing theory among physicists was that the universe existed eternally and had no beginning. When an accumulation of astronomical observations about the expansion of the universe led to the conclusion that the universe probably began from a single point that rapidly expanded outward, physicists gradually came to accept that the idea that the universe had a beginning, in a so-called “Big Bang.” However, this raised a problem: if laws ran the universe, and the universe had a beginning, then the laws must have preexisted the universe. In fact, the laws must have been eternal.

But what evidence is there for the notion that the laws of the universe are eternal? Does it really make sense to think of the law of gravity as existing before the universe existed, before gravity itself existed, before planets, stars, space, and time existed? Does it make sense to think of the law of conservation of mass existing before mass existed, or Mendel’s laws of genetics existing before genes existed? Where and how did they exist? If you take the logic of physics far enough, one is apt to conclude that the laws of physics are some kind of God(s), or that God is a mechanism.

Furthermore, what is the evidence for the notion that laws completely determine the motion of every particle in the universe, that the universe is deterministic? Observations and experiments under controlled conditions confirmed that the laws of Newtonian physics could indeed predict the motions of various objects. But did these observations and experiments prove that all objects everywhere behaved in completely predictable patterns?

Despite some fairly large holes in the ideas of eternal laws and determinism, both ideas have been popular among physicists and among many intellectuals. There have been dissenters, however.

The French philosopher Henri Bergson (1859-1941) argued that the universe was in fact a highly dynamic system with a large degree of freedom within it. According to Bergson, our ideas about eternal laws originated in human attempts to understand the reality of change by using fixed, static concepts. These concepts were useful tools — in fact, the tools had to be fixed and static in order to be useful. But the reality that these concepts pointed to was in fact flowing, all “things” were in flux, and we made a major mistake by equating our static concepts with reality and positing a world of eternal forms, whether that of Plato or the physicists. Actual reality, according to Bergson, was “unceasing creation, the uninterrupted up-surge of novelty.” (Henri Bergson, The Creative Mind, p. 7) Moreover, the flow of time was inherently continuous; we could try to measure time by chopping it into equal segments based on the ticking of a clock or by drawing a graph with units of time along one axis, but real time did not consist of segments any more than a flowing river consisted of segments. Time is a “vehicle of creation and choice” that refutes the idea of determinism. (p. 75)

Bergson did not dispute the experimental findings of physics, but argued that the laws of physics were insufficient to describe what the universe was really like. Physicists denied the reality of time and “unceasing creation,” according to Bergson, because scientists were searching for repeatable patterns, paying little or no attention to what was genuinely new:

[A]gainst this idea of the absolute originality and unforeseeability of forms our whole intellect rises in revolt. The essential function of our intellect, as the evolution of life has fashioned it, is to be a light for our conduct, to make ready for our action on things, to foresee, for a given situation, the events, favorable or unfavorable, which may follow thereupon. Intellect therefore instinctively selects in a given situation whatever is like something already known. . .  Science carries this faculty to the highest possible degree of exactitude and precision, but does not alter its essential character. Like ordinary knowledge, in dealing with things science is concerned only with the aspect of repetition. (Henri Bergson, Creative Evolution, p. 29)

Bergson acknowledged the existence of repetitive patterns in nature, but rather than seeing these patterns as reflecting eternal and wholly deterministic laws, Bergson proposed a different metaphor. Drawing upon the work of the French philosopher Felix Ravaisson, Bergson argued that nature develops “habits” of behavior in the same manner that human beings develop habits, from initial choices of behavior that over time become regular and subconscious: “Should we not then imagine nature, in this form, as an obscured consciousness and a dormant will? Habit thus gives us the living demonstration of this truth, that mechanism is not sufficient to itself: it is, so to speak, only the fossilized residue of a spiritual activity.” In Bergson’s view, spiritual activity was the ultimate foundation of reality, not the habits/mechanisms that resulted from it (The Creative Mind, pp. 197-98, 208).

Bergson’s views did not go over well with most scientists. In 1922, in Paris, Henri Bergson publicly debated Albert Einstein about the nature of time. (See Jimena Canales, The Physicist and the Philosopher: Einstein, Bergson, and the Debate that Changed Our Understanding of Time). Einstein’s theory of relativity posited that there was no absolute time that ticked at the same rate for every body in the universe. Time was linked to space in a single space-time continuum, the movement of bodies was entirely deterministic, and this movement could be predicted by calculating the space-time coordinates of these bodies. In Einstein’s view, there was no sharp distinction between past, present, and future — all events existed in a single block of space-time. This idea of a “block universe” is still predominant in physics today, though it is not without dissenters.

Most people have a “presentist” view of reality.

But physicists prefer the “block universe” view, in which all events are equally real.

Source: Time in Cosmology

 

In fact, when Einstein’s friend Michele Besso passed away in 1955, Einstein wrote a letter of condolence to Besso’s family in which he expressed his sympathies to the family but also declared that the separation between past, past, and future was an illusion anyway, so death did not mean anything. (The Physicist and the Philosopher, pp. 338-9)

It is widely believed that Bergson lost his 1922 debate with Einstein, in large part because Bergson did not fully understand Einstein’s theory of relativity. Nevertheless, while physicists everywhere eventually came to accept relativity, many rejected Einstein’s notion of a completely determinist universe which moved as predictably as a mechanism. The French physicist Louis de Broglie and the Japanese physicist Satosi Watanabe were proponents of Bergson and argued that the indeterminacy of subatomic particles supported Bergson’s view of the reality of freedom, the flow of time, and change. Einstein, on the other hand, never did accept the indeterminacy of quantum physics and insisted to his dying day that there must be “hidden” variables that would explain everything.  (The Physicist and the Philosopher, pp. 234-38)

 

_____________________________

 

Moving forward to the present day, the debate over the reality of time has been rekindled by Lee Smolin, a theoretical physicist at the Perimeter Institute for Theoretical Physics. In Time Reborn, Smolin proposes that time is indeed real and that the neglect of this fact has hindered progress in physics and cosmology. Contrary to what you may have been taught in your science classes, Smolin argues that the laws of nature are not eternal and precise but emergent and approximate. Borrowing the theory of evolution from biology, Smolin argues that the laws of the universe evolve over time, that genuine novelty is real, and that the laws are not precise iron laws but approximate, granting a degree of freedom to what was formerly considered a rigidly deterministic universe.

One major problem with physics, Smolin argues, is that scientists tend to generalize or extrapolate based on conclusions drawn from laboratory experiments conducted under highly controlled conditions, with extraneous variables carefully excluded — Smolin calls this “physics in a box.” Now there is nothing inherently wrong with “physics in a box” — carefully controlled experiments that exclude extraneous variables are absolutely essential to progress in scientific knowledge. The problem is that one cannot take a law derived from such a controlled experiment and simply scale it up to apply to the entire universe; Smolin calls this the “cosmological fallacy.” As Smolin argues, it makes no sense to simply scale up the findings from these controlled experiments, because the universe contains everything, including the extraneous variables! Controlled experiments are too restricted and artificial to serve as an adequate basis for a theory that includes everything. Instead of generalizing from the bottom up based on isolated subsystems of the universe, physicists must construct theories of the whole universe, from the top down. (Time Reborn, pp. 38-39, 97)

Smolin is not the first scientist to argue that the laws of nature may have evolved over time. Smolin points to the eminent physicists Paul Dirac, John Archibald Wheeler, and Richard Feynman as previous proponents of the idea that the laws may have evolved. (Time Reborn, pp. xxv-xxvi) But all of these theorists were preceded by the American philosopher and scientist Charles Sanders Peirce (1839-1914), who argued that “the only possible way of accounting for the laws of nature and for uniformity in general is to suppose them results of evolution.” (Time Reborn, p. xxv) Dr. Smolin gives credit to Charles Sanders Peirce for originating this idea, and proposes two ways in which the laws of nature have evolved.

The first way is through a series of “Big Bangs,” in which each new universe selects different laws each time. Smolin argues that there must have been an endless succession of Big Bangs in the past which have led to our current universe with its particular set of laws. (p. 120) Furthermore, Smolin proposes that black holes create new, baby universes, each with its own laws — so the black holes in our universe are the parents of other universes, and our own universe is the child of a black hole in some other universe! (pp. 123-25) Unfortunately, it seems impossible to adequately prove this theory, unless there is some possible way of observing these other universes with their different laws.

Smolin also proposes that laws can arise at the quantum level based on what he calls the “principle of precedence.” Smolin makes an analogy to Anglo-Saxon law, in which the decisions of judges in the past serve as precedents for decisions made today and in the future, in an ever-growing body of “common law.” The idea is that everything in the universe has a tendency to develop habits; when a truly novel event occurs, and then occurs again, and again, it settles into a pattern of repetition; that settled pattern of repetition indicates the development of a new law of nature. The law did not previously exist eternally — it emerged out of habit. (Time Reborn, pp. 146-53) Furthermore, rather than being bound by deterministic laws, the universe remains genuinely open and free, able to build new forms on top of existing forms. Smolin argues, “In the time-bound picture I propose, the universe is a process for breeding novel phenomena and states of organization, which will forever renew itself as it evolves to states of ever higher complexity and organization. The observational record tells us unambiguously that the universe is getting more interesting as time goes on.” (p. 194)

And yet, despite his openness to the idea of genuine novelty in the evolution of the universe, even Smolin is unable to get away from the idea of mechanisms being ultimately responsible for everything. Smolin writes that the universe began with a particular set of initial conditions and then asks “What mechanism selected the actual initial conditions out of the infinite set of possibilities?” (pp. 97-98) He does not consider the possibility that in the beginning, perhaps there was no mechanism. Indeed, this is the problem with any cosmology that aims to provide a total explanation for existence; as one goes back in time searching for origins, one eventually reaches a first cause that has no prior cause, and thus no causal explanation. One either has to posit a creator-God, an eternal self-sufficient mechanism, or throw up one’s hands and accept that we are faced with an unsolvable mystery.

In fact, Smolin is not as radical as his inspiration, Charles Sanders Peirce. According to Peirce, the universe did not start out with a mechanism but rather began from a condition of maximum freedom and spontaneity, only gradually adopting certain “habits” which evolved into laws. Furthermore, even after the development of laws, the universe retained a great deal of chance and spontaneity. Laws specified certain regularities, but even within these regularities, a great deal of freedom still existed. For example, life forms may have been bound to the surface of the earth and subject to the regular rotation of the earth, the orbit of the earth around the sun, and the limitations of biology, but nonetheless life forms still retained considerable freedom.

Peirce, who believed in God, held that the universe was pervaded not by mechanism but mind, which was by definition characterized by freedom and spontaneity. As the mind/universe developed certain habits, these habits congealed into laws and solid matter. In Peirce’s view, “matter . . . [is] mere specialised and partially deadened mind.” (“The Law of Mind,” The Monist, vol. 11, no. 4, July 1892) This view is somewhat similar to the view of the physicist Werner Heisenberg, who noted that “Energy is in fact the substance from which all elementary particles, all atoms and therefore all things are made. . . .”

One contemporary philosopher, Philip Goff of Durham University, following Peirce and other thinkers, has argued that consciousness is not restricted to humans but in fact pervades the universe, from the smallest subatomic particles to the most intelligent human beings. This theory is known as panpsychism. (see Goff’s book Galileo’s Error: Foundations for a New Science of Consciousness) Goff does not argue that atoms, rocks, water, stars, etc. are like humans in their thought process, but that they have experiences, albeit very primitive and simple experiences compared to humans. The difference between the experiences of a human and the experiences of an electron is vast, but the difference still exists on a spectrum; there is no sharp dividing line that dictates that experience ends when one gets down to the level of insects, cells, viruses, molecules, atoms, or subatomic particles. In Dr. Goff’s words:

Human beings have a very rich and complex experience; horses less so; mice less so again. As we move to simpler and simpler forms of life, we find simpler and simpler forms of experience. Perhaps, at some point, the light switches off, and consciousness disappears. But it’s at least coherent to suppose that this continuum of consciousness fading while never quite turning off carries on into inorganic matter, with fundamental particles having almost unimaginably simple forms of experience to reflect their incredibly simple nature. That’s what panpsychists believe. . . .

The starting point of the panpsychist is that physical science doesn’t actually tell us what matter is. . . . Physics tells us absolutely nothing about what philosophers like to call the intrinsic nature of matter: what matter is, in and of itself. So it turns out that there is a huge hole in our scientific story. The proposal of the panpsychist is to put consciousness in that hole. Consciousness, for the panpsychist, is the intrinsic nature of matter. There’s just matter, on this view, nothing supernatural or spiritual. But matter can be described from two perspectives. Physical science describes matter “from the outside,” in terms of its behavior. But matter “from the inside”—i.e., in terms of its intrinsic nature—is constituted of forms of consciousness.

Unfortunately, there is, at present, no proof that the universe is pervaded by mind, nor is there solid evidence that the laws of physics have evolved. We do know that the science of physics is no longer as deterministic as it used to be. The behavior of subatomic particles is not fully predictable, despite the best efforts of physicists for nearly a century, and many physicists now acknowledge this. We also know that the concepts of laws and determinism often fail in the field of biology — there are very few actual laws in biology, and the idea that these laws preexisted life itself seems incoherent. No biologist will tell you that human beings in their present state are the inevitable product of determinist evolution and that if we started the planet Earth all over again, we would end up in 4.5 billion years with exactly the same types of life forms, including humans, that we have now. Nor can biologists predict the movement of life forms the same way that physicists can predict the movement of planets. Life forms do their own thing. Human beings retain their free will and moral responsibility. Still, the notion that the laws of physics are pre-existent and eternal appears to have no solid ground either; it is merely one of those assumptions that has become widely accepted because few have sought to challenge it or even ask for evidence.

The Metaphor of “Mechanism” in Science

The writings of science make frequent use of the metaphor of “mechanism.” The universe is conceived as a mechanism, life is a mechanism, and even human consciousness has been described as a type of mechanism. If a phenomenon is not an outcome of a mechanism, then it is random. Nearly everything science says about the universe and life falls into the two categories of mechanism and random chance.

The use of the mechanism metaphor is something most of us hardly ever notice. Science, allegedly, is all about literal truth and precise descriptions. Metaphors are for poetry and literature. But in fact mathematics and science use metaphors. Our understandings of quantity, space, and time are based on metaphors derived from our bodily experiences, as George Lakoff and Rafael Nunez have pointed out in their book Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being  Theodore L. Brown, a professor emeritus of chemistry at the University of Illinois at Urbana-Champaign, has provided numerous examples of scientific metaphors in his book, Making Truth: Metaphor in Science. Among these are the “billiard ball” and “plum pudding” models of the atom, as well as the “energy landscape” of protein folding. Scientists envision cells as “factories” that accept inputs and produce goods. The genetic structure of DNA is described as having a “code” or “language.” The term “chaperone proteins” was invented to describe proteins that have the job of assisting other proteins to fold correctly.

What I wish to do in this essay is closely examine the use of the mechanism metaphor in science. I will argue that this metaphor has been extremely useful in advancing our knowledge of the natural world, but its overuse as a descriptive and predictive model has led us down the wrong path to fully understanding reality — in particular, understanding the actual nature of life.

____________________________

Thousands of years ago, human beings attributed the actions of natural phenomena to spirits or gods. A particular river or spring or even tree could have its own spirit or minor god. Many humans also believed that they themselves possessed a spirit or soul which occupied the body, gave the body life and motion and intelligence, and then departed when the body died. According to the Bible, Genesis 2:7, when God created Adam from the dust of the ground, God “breathed into his nostrils the breath of life; and man became a living soul.” Knowing very little of biology and human anatomy, early humans were inclined to think that spirit/breath gave life to material bodies; and when human bodies no longer breathed, they were dead, so presumably the “spirit” went someplace else. The ancient Hebrews also saw a role for blood in giving life, which is why they regarded blood as sacred. Thus, the Hebrews placed many restrictions on the consumption and handling of blood when they slaughtered animals for sacrifice and food. These views about the spiritual aspects of breath and blood are also the historical basis of “vitalism,” the theory that life consists of more than material parts, and must somehow be based on a vital principle, spark, or force, in addition to matter. 

The problem with the vitalist outlook is that it did not appreciably advance our knowledge of nature and the human body.  The idea of a vital principle or force was too vague and could not be tested or measured or even observed. Of course, humans did not have microscopes thousands of years ago, so we could not see cells and bacteria, much less atoms.

By the 17th century, thinkers such as Thomas Hobbes and Rene Descartes proposed that the universe and even life forms were types of mechanisms, consisting of many parts that interacted in such a way as to result in predictable patterns. The universe was often analogized to a clock. (The first mechanical clock was developed around 1300 A.D., but water clocks, based on the regulated flow of water, have been in use for thousands of years.) The great French scientist Pierre-Simon Laplace was an enthusiast for the mechanist viewpoint and even argued that the universe could be regarded as completely determined from its beginnings:

We may regard the present state of the universe as the effect of the past and the cause of the future. An intellect which at any given moment knew all of the forces that animate nature and the mutual positions of the beings that compose it, if this intellect were vast enough to submit the data to analysis, could condense into a single formula the movement of the greatest bodies of the universe and that of the lightest atom; for such an intellect nothing could be uncertain and the future just like the past would be present before its eyes. (A Philosophical Essay on Probabilities, Chapter Two)

Laplace’s radical determinism was not embraced by all scientists, but it was a common view among many scientists. Later, as the science of biology developed, it was argued that the evolution of life was not as determined as the motion of the planets. Rather, random genetic mutations resulted in new life forms and “natural selection” determined that fit life forms flourished and reproduced, while unfit forms died out. In this view, physical mechanisms combined with random chance explained evolution.

The astounding advances in physics and biology in the past centuries certainly seem to justify the mechanism metaphor. Reality does seem to consist of various parts that interact in predictable cause-and-effect patterns. We can predict the motions of objects in space, and build technologies that send objects in the right direction and speed to the right target. We can also methodically trace illnesses to a dysfunction in one or more parts of the body, and this dysfunction can often be treated by medicine or surgery.

But have we been overusing the mechanism metaphor? Does reality consist of nothing but determined and predictable cause-and-effect patterns with an element of random chance mixed in?

I believe that we can shed some light on this subject by first examining what mechanisms are — literally — and then examine what resemblances and differences there are between mechanisms and the actual universe, between mechanisms and actual life.

____________________

 

Even in ancient times, human beings created mechanisms, from clocks to catapults to cranes to odometers. The Antikythera mechanism of ancient Greece, constructed around 100 B.C., was a sophisticated mechanism with over 30 gears that was able to predict astronomical motions and is considered to be one of the earliest computers. Below is a photo of a fragment of the mechanism, discovered in an ocean shipwreck in 1901:

 

Over subsequent centuries, human civilization created steam engines, propeller-driven ships, automobiles, airplanes, digital watches, computers, robots, nuclear reactors, and spaceships.

So what do most or all of these mechanisms have in common?

  1. Regularity and Predictability. Mechanisms have to be reliable. They have to do exactly what you want every time. Clocks can’t run fast, then run slow; automobiles can’t unilaterally change direction or speed; nuclear reactors can’t overheat on a whim; computers have to give the right answer every time. 
  2. Precision. The parts that make up a mechanism must fit together and move together in precise ways, or breakdown, or even disaster, will result. Engineering tolerances are typically measured in millimeters.
  3. Stability and Durability. Mechanisms are often made of metal, and for good reason. Metal can endure extreme forces and temperatures, and, if properly maintained, can last for many decades. Metal can slightly expand and contract depending on temperature, and metals can have some flexibility when needed, but metallic constructions are mostly stable in shape and size. 
  4. Unfree/Determined. Mechanisms are built by humans for human purposes. When you manage the controls of a mechanism correctly, the results are predictable. If you get into your car and decide to drive north, you will drive north. The car will not dispute you or override your commands, unless it is programmed to override your commands, in which case it is simply following a different set of instructions. The car has no will of its own. Human beings would not build mechanisms if such mechanisms acted according to their own wills. The idea of a self-willing mechanism is prolific in science fiction, but not in science.
  5. They do not grow. Mechanisms do not become larger over time or change their basic structure like living organisms. This would be contrary to the principle of durability/stability. Mechanisms are made for a purpose, and if there is a new purpose, a new mechanism will be made.
  6. They do not reproduce. Mechanisms do not have the power of reproduction. If you put a mechanism into a resource-rich environment, it will not consume energy and materials and give birth to new mechanisms. Only life has this power. (A partial exception can be made in the case of  computer “viruses,” which are lines of code programmed to duplicate themselves, but the “viruses” are not autonomous — they do the bidding of the programmer.)
  7. Random events lead to the universal degradation of mechanisms, not improvement. According to neo-Darwinism, random mutations in the genes of organisms are what is responsible for evolution; in most cases, mutations are harmful, but in some cases, they lead to improvement, leading to new and more complex organisms, ultimately culminating in human beings. So what kind of random mutations (changes) lead to improved mechanisms? None, really. Mechanisms change over time with random events, but these events lead to degradation of mechanisms, not improvement. Rust sets in, different parts break, electric connections fail, lubricating fluids leak. If you leave a set of carefully-preserved World War One biplanes out in a field, without human intervention, they will not eventually evolve into jet planes and rocket ships. They will just break down. Likewise, electric toasters will not evolve into supercomputers, no matter how many millions of years you wait. Of course, organisms also degrade and die, but they have the power of reproduction, which continues the population and creates opportunities for improvement.

There is one hypothetical mechanism that, if constructed, could mimic actual organisms: a self-replicating machine. Such a machine could conceivably contain plans within itself to gather materials and energy from its environment and use these materials and energy to construct copies of itself, growing exponentially in numbers as more and more machines reproduce themselves. Such machines could even be programmed to “mutate,” creating variations in its descendants. However, no such mechanism has yet been produced. Meanwhile, primitive single-celled life forms on earth have been successfully reproducing for four billion years.

Now, let’s compare mechanisms to life forms. What are the characteristics of life?

  1. Adaptability/Flexibility. The story of life on earth is a story of adaptability and flexibility. The earliest life forms, single cells, apparently arose in hydrothermal vents deep in the ocean. Later, some of these early forms evolved into multi-cellular creatures, which spread throughout the oceans. After 3.5 billion years, fish emerged, and then much later, the first land creatures. Over time, life adapted to different environments: sea, land, rivers, caves, air; and also to different climates, from the steamiest jungles to frozen environments. 
  2. Creativity/Diversification. Life is not only adaptive, it is highly creative and branches into the most diverse forms over time. Today, there are millions of species. Even in the deepest parts of the ocean, life forms thrive in an environment with pressures that would crush most life forms. There are bacteria that can live in water at or near the boiling point. The tardigrade can survive the cold, hostile vacuum of space. The bacteria Deinococcus radiodurans is able to survive extreme forms of radiation by means of one of the most efficient DNA repair capabilities ever seen. Now it’s true that among actual mechanisms there is also a great variety; but these mechanisms are not self-created, they are created by humans and retain their forms unless specifically modified by humans.
  3. Drives toward cooperation / symbiosis. Traditional Darwinist views of evolution see life as competition and “survival of the fittest.” However, more recent theorists of evolution point to the strong role of cooperation in the emergence and survival of advanced life forms. Biologist Lynn Margulis has argued that the most fundamental building block of advanced organisms, the cell, was the result of a merger between more primitive bacteria billions of years ago. By merging, each bacterium lent a particular biological advantage to the other, and created a more advanced life form. This theory was regarded with much skepticism at the time it was proposed, but over time it became widely accepted.  Today, only about half of the human body is made up of human cells — the other half consists of trillions of microbes and quadrillions of viruses that largely live in harmony with human cells. Contrary to the popular view that microbes and viruses are threats to human beings, most of these microbes and viruses are harmless or even beneficial to humans. Microbes are essential in digesting food and synthesizing vitamins, and even the human immune system is partly built and partly operated by microbes!  By contrast, the parts of a mechanism don’t naturally come together to form the mechanism; they are forced together by their manufacturer.
  4. Growth. Life is characterized by growth. All life forms begin with either a single cell, or the merger of two cells, after which a process of repeated division begins. In multicellular organisms, the initial cell eventually becomes an embryo; and when that embryo is born, becoming an independent life form, it continues to grow. In some species, that life form develops into an animal that can weigh hundreds or even thousands of pounds. This, from a microscopic cell! No existing mechanism is capable of that kind of growth.
  5. Reproduction. Mechanisms eventually disintegrate, and life forms die. But life forms have the capability of reproducing and making copies of themselves, carrying on the line. In an environment with adequate natural resources, the number of life forms can grow exponentially. Mechanisms have not mastered that trick.
  6. Free will/choice. Mechanisms are either under direct human control, are programmed to do certain things, or perform in a regular pattern, such as a clock. Life forms, in their natural settings, are free and have their own purposes. There are some regular patterns — sleep cycles, mating seasons, winter migration. But the day-to-day movements and activities of life forms are largely unpredictable. They make spur-of-the-moment decisions on where to search for food, where to find shelter, whether to fight or flee from predators, and which mate is most acceptable. In fact, the issue of mate choice is one of the most intriguing illustrations of free will in life forms — there is evidence that species may select mates for beauty over actual fitness, and human egg cells even play a role in selecting which sperm cells will be allowed to penetrate them.
  7. Able to gather energy from its environment. Mechanisms require energy to work, and they acquire such energy from wound springs or weights (in clocks), electrical outlets, batteries, or fuel. These sources of energy are provided by humans in one way or another. But life forms are forced to acquire energy on their own, and even the most primitive life forms mastered this feat billions of years ago. Plants get their energy from the sun, and animals get their energy from plants or other animals. It’s true that some mechanisms, such as space probes, can operate on their own for many years while drawing energy from solar panels. But these panels were invented and produced by humans, not by mechanisms.
  8. Self-organizing. Mechanisms are built, but life forms are self-organizing. Small components join other small components, forming a larger organization; this larger organization gathers together more components. There is a gradual growth and differentiation of functions — digestion, breathing, brain and nervous system, mobility, immune function. Now this process is very, very slow: evolution takes place over hundreds of millions of years. But mechanisms are not capable of self-organization. 
  9. Capacity for healing and self-repair. When mechanisms are broken, or not working at full potential, a human being intervenes to fix the mechanism. When organisms are injured or infected, they can self-repair by initiating multiple processes, either simultaneously or in stages: immune cells fight invaders; blood cells clot in open wounds to stop bleeding; dead tissues and cells are removed by other cells; and growth hormones are released to begin the process of building new tissue. As healing nears completion, cells originally sent to repair the wound are removed or modified. Now self-repair is not always adequate, and organisms die all the time from injury or infection. But they would die much sooner, and probably a species would not persist at all, without the means of self-repair. Even the existing medications and surgery that modern science has developed largely work with and supplement the body’s healing capacities — after all, surgery would be unlikely to work in most cases without the body’s means of self-repair after the surgeon completes cutting and sewing.

______________________

 

The mechanism metaphor served a very useful purpose in the history of science, by spurring humanity to uncover the cause-and-effect patterns responsible for the motions of stars and planets and the biological functions of life. We can now send spacecraft to planets; we can create new chemicals to improve our lives; we now know that illness is the result of a breakdown in the relationship between the parts of a living organism; and we are getting better and better in figuring out which human parts need medication or repair, so that lifespans and general health can be extended.

But if we are seeking the broadest possible understanding of what life is, and not just the biological functions of life, we must abandon the mechanism metaphor as inadequate and even deceptive. I believe the mechanism metaphor misses several major characteristics of life:

  1. Change. Whether it is growth, reproduction, adaptation, diversification, or self-repair, life is characterized by change, by plasticity, flexibility, and malleability. 
  2. Self-Driven Progress. There is clearly an overall improvement in life forms over time. Changes in species may take place over millions or billions of years, but even so, the differences between a single-celled animal and contemporary multicellular creatures are astonishingly large. It is not just a question of “complexity,” but of capability. Mammals, reptiles, and birds have senses, mobility, and intelligence that single-celled creatures do not have.
  3. Autonomy and freedom. Although some scientists are inclined to think of living creatures, including humans, as “gene machines,” life forms can’t be easily analogized to pre-programmed machines. Certainly, life forms have goals that they pursue — but the pursuit of these goals in an often hostile environment requires numerous spur-of-the-moment decisions that do not lead to the predictable outcomes we expect of mechanisms.

Robert Pirsig, author of Zen and the Art of Motorcycle Maintenance, argues in Lila that the fundamental nature of life is its ability to move away from mechanistic patterns, and science has overlooked this fact because scientists consider it their job to look for mechanisms:

Mechanisms are the enemy of life. The more static and unyielding the mechanisms are, the more life works to evade them or overcome them. The law of gravity, for example, is perhaps the most ruthlessly static pattern of order in the universe. So, correspondingly, there is no single living thing that does not thumb its nose at that law day in and day out. One could almost define life as the organized disobedience of the law of gravity. One could show that the degree to which an organism disobeys this law is a measure of its degree of evolution. Thus, while the simple protozoa just barely get around on their cilia, earthworms manage to control their distance and direction, birds fly into the sky, and man goes all the way to the moon. . . .  This would explain why patterns of life [in evolution] do not change solely in accord with causative ‘mechanisms’ or ‘programs’ or blind operations of physical laws. They do not just change valuelessly. They change in ways that evade, override and circumvent these laws. The patterns of life are constantly evolving in response to something ‘better’ than that which these laws have to offer. (Lila, 1991 hardcover edition, p. 143)

But if the “mechanism” metaphor is inadequate, what are some alternative conceptualizations and metaphors that can retain the previous advances of science while deepening our understanding and helping us make new discoveries? I will discuss this issue in the next post.

Next: Beyond the “Mechanism” Metaphor in Biology

 

The Mythos of Mathematics

‘Modern man has his ghosts and spirits too, you know.’

‘What?’

‘Oh, the laws of physics and of logic . . . the number system . . . the principle of algebraic substitution. These are ghosts. We just believe in them so thoroughly they seem real.’

Robert Pirsig, Zen and the Art of Motorcycle Maintenance

 

It is a popular position among physicists that mathematics is what ultimately lies behind the universe. When asked for an explanation for the universe, they point to numbers and equations, and furthermore claim that these numbers and equations are the ultimate reality, existing objectively outside the human mind. This view is known as mathematical Platonism, after the Greek philosopher Plato, who argued that the ultimate reality consisted of perfect forms.

The problem we run into with mathematical Platonism is that it is subject to some of the same skepticism that people have about the existence of God, or the gods. How do we know that mathematics exists objectively? We can’t sense mathematics directly; we only know that it is a useful tool for dealing with reality. The fact that math is useful does not prove that it exists independently of human minds. (For an example of this skepticism, see this short video).

Scholars George Lakoff and Rafael Nunez, in their book Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being, offer the provocative and fascinating thesis that mathematics consists of metaphors. That is, the abstractions of mathematics are ultimately grounded in conceptual comparisons to concrete human experiences. In the view of Lakoff and Nunez, all human ideas are shaped by our bodily experiences, our senses, and how these senses react to our environment. We try to make sense of events and things by comparing them to our concrete experiences. For example, we conceptualize time as a limited resource (“time is money”); we conceptualize status or mood in terms of space (happy is “up,” while sad is “down”); we personify events and things (“inflation is eating up profits,” “we must declare war on poverty”). Metaphors are so prevalent and taken for granted, that most of the time we don’t even notice them.

Mathematical systems, according to Lakoff and Nunez, are also metaphorical creations of the human mind. Since human beings have common experiences with space, time, and quantities, our mathematical systems are similar. But we do have a choice in the metaphors we use, and that is where the creative aspect of mathematics comes in. In other words, mathematics is grounded in common experiences, but mathematical conceptual systems are creations of the imagination. According to Lakoff and Nunez, confusion and paradoxes arise when we take mathematics literally and don’t recognize the metaphors behind mathematics.

Lakoff and Nunez point to a number of common human activities that subsequently led to the creation of mathematical abstractions. The collection of objects led to the creation of the “counting numbers,” otherwise known as “natural numbers.” The use of containers led to the notion of sets and set theory. The use of measuring tools (such as the ruler or yard stick) led to the creation of the “number line.” The number line in turn was extended to a plane with x and y coordinates (the “Cartesian plane“). Finally, in order to understand motion, mathematicians conceptualized time as space, plotting points in time as if they were points in space — time is not literally the same as space, but it is easier for human beings to measure time if it is plotted on a spatial graph.

Throughout history, while the counting numbers have been widely accepted, there have been controversies over the creation of other types of numbers. One of the reasons for these controversies is the mistaken belief that numbers must be objectively real rather than metaphorical. So the number zero was initially controversial because it made no sense to speak literally of having a collection of zero objects. Negative numbers were even more controversial because it’s impossible to literally have a negative number of objects. But as the usefulness of zero and negative numbers as metaphorical expressions and in performing calculations became clear, these numbers became accepted as “real” numbers.

The metaphor of the measuring stick/number line, according to Lakoff and Nunez, has been responsible for even more controversy and confusion. The basic problem is that a line is a continuous object, not a collection of objects. If one makes an imaginative metaphorical leap and envisions the line as a collection of objects known as segments or points, that is very useful for measuring the line, but a line is not literally a collection of segments or points that correspond to objectively existing numbers.

If you draw three points on a piece of paper, the sum of the collection of points clearly corresponds to the number three, and only the number three. But if you draw a line on a piece of paper, how many numbers does it have? Where do those numbers go? The answer is up to you, depending on what you hope to measure and how much precision you want. The only requirement is that the numbers are in order and the length of the segments is consistently defined. You can put zero on the left side of the line, the right side of the line, or in the middle. You can use negative numbers or not use negative numbers. The length of the segments can be whatever you want, as long as the definitions of segment length are consistent.

The number line is a great mental tool, but it does not objectively exist, outside of the human mind. Neglecting this fact has led to paradoxes that confounded the ancient Greeks and continue to mystify human beings to this day. The first major problem arose when the Greeks attempted to determine the ratio of the sides of a particular polygon and discovered that the ratio could not be expressed as a ratio of whole numbers, but rather as an infinite, nonrepeating decimal. For example, a right triangle with two shorter sides of length 1 would, according to the Pythagorean theorem, have a hypotenuse length equivalent to the square root of 2, which is an infinite decimal: 1.41421356. . .  This scandalized the ancient Greeks at first, because many of them had a religious devotion to the idea that whole numbers existed objectively and were the ultimate basis of reality. Nevertheless, over time the Greeks eventually accepted the so-called “irrational numbers.”

Perhaps the most famous irrational number is pi, the measure of the ratio between the circumference of a circle and its diameter: 3.14159265. . . The fact that pi is an infinite decimal fascinates people to no end, and scientists have calculated the value of pi to over 13 trillion digits. But the digital representation of pi has no objective existence — it is simply a creation of the human imagination based on the metaphor of the measuring stick / number line. There’s no reason to be surprised or amazed that the ratio of the circumference of a circle to its diameter is an infinite decimal; lines are continuous objects, and expressing lines as being composed of discrete objects known as segments is bound to lead to difficulties eventually. Moreover, pi is not necessary for the existence of circles. Even children are perfectly capable of drawing circles without knowing the value of pi. If children can draw circles without knowing the value of pi, why should the universe need to know the value of pi? Pi is simply a mental tool that human beings created to understand the ratio of certain line lengths by imposing a conceptual framework of discrete segments on a continuous quantity. Benjamin Lee Buckley, in his book The Continuity Debate, underscores this point, noting that one can use discrete tools for measuring continuity, but that truly continuous quantities are not really composed of discrete objects.

It is true that mathematicians have designated pi and other irrational numbers as “real” numbers, but the reality of the existence of pi outside the human mind is doubtful. An infinitely precise pi implies infinitely precise measurement, but there are limits to how precise one can be in reality, even assuming absolutely perfect measuring instruments. Although pi has been calculated to over 13 trillion digits, it is estimated that only 39 digits are needed to calculate the volume of the known universe to the precision of one atom! Furthermore, the Planck length is the smallest measurable length in the universe. Although quite small, the Planck length sets a definite limit on how precise pi can be in reality. At some point, depending on the size of the circle one creates, the extra digits in pi are simply meaningless.

Undoubtedly, the number line is an excellent mental tool. If we had perfect vision, perfect memory, and perfect eye-hand coordination, we wouldn’t need to divide lines into segments and count how many segments there are. But our vision is imperfect, our memories fallible, and our eye-hand coordination is imperfect. That is why we need to use versions of the number line to measure things. But we need to recognize that we are creating and imposing a conceptual tool on reality. This tool is metaphorical and, while originating in human experience, it is not reality itself.

Lakoff and Nunez point to other examples of metaphorical expressions in mathematics, such as the concept of infinity. Mathematicians discuss the infinitely large, the infinitely small, and functions in calculus that come infinitely close to some designated limit. But Lakoff and Nunez point out that the notion of actual (literal) infinity, as opposed to potential infinity, has been extremely problematic, because calculating or counting infinity is inherently an endless process. Lakoff and Nunez argue that envisioning infinity as a thing, or the result of a completed process, is inherently metaphorical, not literal. If you’ve ever heard children use the phrase “infinity plus one!” in their taunts, you can see some of the difficulties with envisioning infinity as a thing, because one can simply take the allegedly completed process and start it again. Oddly, even professional mathematicians don’t agree on the question of whether “infinity plus one” is a meaningful statement. Traditional mathematics says that infinity plus one is still infinity, but there are more recent number systems in which infinity plus one is meaningful. (For a discussion of how different systems of mathematics arrive at different answers to the same question, see this post.)

Nevertheless, many mathematicians and physicists fervently reject the idea that mathematics comes from the human mind. If mathematics is useful for explaining and predicting real world events, they argue, then mathematics must exist in objective reality, independent of human minds. But why is it important for mathematics to exist objectively? Isn’t it enough that mathematics is a useful mental tool for describing reality? Besides, if all the mathematicians in the world stopped all their current work and devoted themselves entirely to proving the objective existence of mathematical objects, I doubt that they would succeed, and mathematical knowledge would simply stop progressing.

What is “Mythos” and “Logos”?

The terms “mythos” and “logos” are used to describe the transition in ancient Greek thought from the stories of gods, goddesses, and heroes (mythos) to the gradual development of rational philosophy and logic (logos). The former is represented by the earliest Greek thinkers, such as Hesiod and Homer; the latter is represented by later thinkers called the “pre-Socratic philosophers” and then Socrates, Plato, and Aristotle. (See the book: From Myth to Reason? Studies in the Development of Greek Thought).

In the earliest, “mythos” stage of development, the Greeks saw events of the world as being caused by a multitude of clashing personalities — the “gods.” There were gods for natural phenomena such as the sun, the sea, thunder and lightening, and gods for human activities such as winemaking, war, and love. The primary mode of explanation of reality consisted of highly imaginative stories about these personalities. However, as time went on, Greek thinkers became critical of the old myths and proposed alternative explanations of natural phenomena based on observation and logical deduction. Under “logos,” the highly personalized worldview of the Greeks became transformed into one in which natural phenomena were explained not by invisible superhuman persons, but by impersonal natural causes.

However, many scholars argue that there was not such a sharp distinction between mythos and logos historically, that logos grew out of mythos, and elements of mythos remain with us today.

For example, ancient myths provided the first basic concepts used subsequently to develop theories of the origins of the universe. We take for granted the words that we use every day, but the vast majority of human beings never invent a single word or original concept in their lives — they learn these things from their culture, which is the end-product of thousands of years of speaking and writing by millions of people long-dead. The very first concepts of “cosmos,” “beginning,” nothingness,” and differentiation from a single substance — these were not present in human culture for all time, but originated in ancient myths. Subsequent philosophers borrowed these concepts from the myths, while discarding the overly-personalistic interpretations of the origins of the universe. In that sense, mythos provided the scaffolding for the growth of philosophy and modern science. (See Walter Burkert, “The Logic of Cosmogony” in From Myth to Reason: Studies in the Development of Greek Thought.)

An additional issue is the fact that not all myths are wholly false. Many myths are stories that communicate truths even if the characters and events in the story are fictional. Socrates and Plato denounced many of the early myths of the Greeks, but they also illustrated philosophical points with stories that were meant to serve as analogies or metaphors. Plato’s allegory of the cave, for example, is meant to illustrate the ability of the educated human to perceive the true reality behind surface impressions. Could Plato have made the same philosophical point in a literal language, without using any stories or analogies? Possibly, but the impact would be less, and it is possible that the point would not be effectively communicated at all.

Some of the truths that myths communicate are about human values, and these values can be true even if the stories in which the values are embedded are false. Ancient Greek religion contained many preposterous stories, and the notion of personal divine beings directing natural phenomena and intervening in human affairs was false. But when the Greeks built temples and offered sacrifices, they were not just worshiping personalities — they were worshiping the values that the gods represented. Apollo was the god of light, knowledge, and healing; Hera was the goddess of marriage and family; Aphrodite was the goddess of love; Athena was the goddess of wisdom; and Zeus, the king of the gods, upheld order and justice. There’s no evidence at all that these personalities existed or that sacrifices to these personalities would advance the values they represented. But a basic respect for and worshipful disposition toward the values the gods represented was part of the foundation of ancient Greek civilization. I don’t think it was a coincidence that the city of Athens, whose patron goddess was Athena, went on to produce some of the greatest philosophers the world has seen — love of wisdom is the prerequisite for knowledge, and that love of wisdom grew out of the culture of Athens. (The ancient Greek word philosophia literally means “love of wisdom.”)

It is also worth pointing out that worship of the gods, for all of its superstitious aspects, was not incompatible with even the growth of scientific knowledge. Modern western medicine originated in the healing temples devoted to the god Asclepius, the son of Apollo, and the god of medicine. Both of the great ancient physicians Hippocrates and Galen are reported to have begun their careers as physicians in the temples of Asclepius, the first hospitals. Hippocrates is widely regarded as the father of western medicine and Galen is considered the most accomplished medical researcher of the ancient world. As love of wisdom was the prerequisite for philosophy, reverence for healing was the prerequisite for the development of medicine.

Karen Armstrong has written that ancient myths were never meant to be taken literally, but were “metaphorical attempts to describe a reality that was too complex and elusive to express in any other way.” (A History of God) I am not sure that’s completely accurate. I think it most likely that the mass of humanity believed in the literal truth of the myths, while educated human beings understood the gods to be metaphorical representations of the good that existed in nature and humanity. Some would argue that this use of metaphors to describe reality is deceptive and unnecessary. But a literal understanding of reality is not always possible, and metaphors are widely used even by scientists.

Theodore L. Brown, a professor emeritus of chemistry at the University of Illinois at Urbana-Champaign, has provided numerous examples of scientific metaphors in his book, Making Truth: Metaphor in Science. According to Brown, the history of the human understanding of the atom, which cannot be directly seen, began with a simple metaphor of atoms as billiard balls; later, scientists compared atoms to plum pudding; then they compared the atom to our solar system, with electrons “orbiting” around a nucleus. There has been a gradual improvement in our models of the atom over time, but ultimately, there is no single, correct literal representation of the atom. Each model illustrates an aspect or aspects of atomic behavior — no one model can capture all aspects accurately. Even the notion of atoms as particles is not fully accurate, because atoms can behave like waves, without a precise position in space as we normally think of particles as having. The same principle applies to models of the molecule as well. (Brown, chapters, 4-6)  A number of scientists have compared the imaginative construction of scientific models to map-making — there is no single, fully accurate way to map the earth (using a flat surface to depict a sphere), so we are forced to use a variety of maps at different scales and projections, depending on our needs.

Sometimes the visual models that scientists create are quite unrealistic. The model of the “energy landscape” was created by biologists in order to understand the process of protein folding — the basic idea was to imagine a ball rolling on a surface pitted with holes and valleys of varying depth. As the ball would tend to seek out the low points on the landscape (due to gravity), proteins would tend to seek the lowest possible free energy state. All biologists know the energy landscape model is a metaphor — in reality, proteins don’t actually go rolling down hills! But the model is useful for understanding a process that is highly complex and cannot be directly seen.

What is particularly interesting is that some of the metaphorical models of science are frankly anthropomorphic — they are based on qualities or phenomena found in persons or personal institutions. Scientists envision cells as “factories” that accept inputs and produce goods. The genetic structure of DNA is described as having a “code” or “language.” The term “chaperone proteins” was invented to describe proteins that have the job of assisting other proteins to fold correctly; proteins that don’t fold correctly are either treated or dismantled so that they do not cause damage to the larger organism — a process that has been given a medical metaphor: “protein triage.” (Brown, chapters 7-8) Even referring to the “laws of physics” is to use a metaphorical comparison to human law. So even as logos has triumphed over the mythos conception that divine personalities rule natural phenomena, qualities associated with personal beings have continued to sneak into modern scientific models.

The transition of a mythos-dominated worldview to a logos-dominated worldview was a stupendous achievement of the ancient Greeks, and modern philosophy, science, and civilization would not be possible without it. But the transition did not involve a complete replacement of one worldview with another, but rather the building of additional useful structures on top of a simple foundation. Logos grew out of its origins in mythos, and retains elements of mythos to this day. The compatibilities and conflicts between these two modes of thought are the thematic basis of this website.

Related: A Defense of the Ancient Greek Pagan Religion