The Value of Myth in Depicting the Conflict Between Good and Evil

In October 2013, three young friends living in the Washington DC area — a male-female couple and a male friend — went out to a number of local bars to celebrate a birthday. The friends drank copiously, and then returned to a small studio apartment at 2 a.m. An hour later, one of the men stabbed his male friend to death. When police arrived, they found the surviving male covered in blood, with the floor and wall also covered in blood. “I caught my buddy and my girl cheating,” said the man. “I killed my buddy.” The man was subsequently found guilty of murder and sentenced to life in prison.

How did this happen? Was murder inevitable? It seems unlikely. The killing was not pre-planned. No one in the group had a prior record of violence or criminal activity. All three friends were well-educated and successful, with bright futures ahead of them. It’s true that all were extremely drunk, but drunkenness very rarely leads to murder.

This case is noteworthy, not because murders are unusual — murders happen all the time — but because this particular murder seems to have been completely unpredictable. It’s the normality of the persons and circumstances that disturbs the conscience. Under slightly different circumstances, the murder would not have happened at all, and all three would conceivably have lived long, happy lives.

Most of us are law-abiding citizens. We believe we are good, and despise thieves, rapists, and murderers. But what happens when the normal conditions under which we live change, when we are humiliated or outraged, when there is no security for our lives or property, when our opportunities for happiness are snatched from us for no good reason? How far will we go to avenge ourselves, and what violence will we justify in order to restore our perceived notion of justice?

The conflict between good and evil tendencies within human beings is a frequent theme in both philosophy and religion. However, philosophy has had a tendency to attribute evil tendencies within humanity to a deficiency of reason. In the view of many philosophers, reason alone should be able to establish that human rights are universal, and that impulses to violence, conquest, and enslavement are irrational. Furthermore, they argue that when reason establishes its dominance over the passions within human beings, societies become freer and more peaceful. (Notably, the great philosophers David Hume and Adam Smith rejected this argument.)

The religious interpretation of the conflict between good and evil, on the other hand, is based more upon myth and faith. And while the myths of religion are not literally accurate in terms of history or science, these myths often have insights into the inner turmoil of human beings that are lost in straightforward descriptions of fact and an emphasis on rationality.

The Christian scholar Paul Elmer More argued in his book, The Religion of Plato, that the dualism between good and evil within the human soul was very effectively described by the Greek philosopher Plato, but that this description relied heavily on the picturesque elements of myth, as found in the The Republic, Laws, Timaeus, and other works. In Plato’s view, there was a struggle within all human beings between a higher nature and a lower nature, the higher nature being drawn to a vision of ideal forms and the lower nature being dominated by the flux of human passions and desires. According to More,

It is not that pleasure or pain, or the desires and emotions connected with them, are totally depraved in themselves . . . but they contain the principle of evil in so far as they are radically unlimited, belonging by nature to what in itself is without measure and tends by inertia to endless expansion. Hence, left to themselves, they run to evil, whereas under control they may become good, and the art of life lies in the governing of pleasure and pain by a law exterior to them, in a man’s becoming master of himself, or better than himself. (pp. 225-6)

What are some of the myths Plato discusses? In The Republic, Plato tells the story of Gyges, a lowly shepherd who discovers a magic ring that bestows the power of invisibility. With this invisibility, Gyges is able to go wherever he wants undetected, and to do what he wants without anyone stopping him. Eventually, Gyges kills the king of his country and obtains absolute power for himself. In discussing this story, Glaucon, a student of Socrates, argues that with the awesome power of invisibility, no man would be able to remain just, in light of the benefits one could obtain. However, Socrates responds that being a slave to one’s desires actually does not bring long-term happiness, and that the happy man is one who is able to control his desires.

In the Phaedrus, Plato relates the dialogue between Socrates and his pupil Phaedrus on whether friendship is preferable to love. Socrates discusses a number of myths throughout the dialogue, but appears to use these myths as metaphorical illustrations of the internal struggle within human beings between their higher and lower natures. It is the nature of human beings, Socrates notes, to pursue the good and the beautiful, and this pursuit can be noble or ignoble depending on whether reason is driving one toward enlightenment or desire takes over and drives one to excessive pleasure-seeking. Indeed, Socrates describes love as a type of “madness” — but he argues that this madness is a source of inspiration that can result in either good or evil depending on how one directs the passions. Socrates proceeds to employ a figurative picture of a charioteer driving two horses, with one horse being noble and the other ignoble. The noble horse pulls the charioteer toward heaven, while the ignoble horse pulls the charioteer downward, toward the earth and potential disaster. Even so, the human being in love is influenced by the god he or she follows; the followers of Ares, the god of war, are inclined to violence if they feel wronged by their lover; the followers of Zeus, on the other hand, use love to seek philosophical wisdom.

The nature and purpose of love is also discussed in the Symposium. In this dialogue, Socrates relates a fantastical myth about human beings originally being created with two bodies attached at the back, with two heads, four arms, and four legs. These beings apparently threatened the gods, so Zeus cut the beings in two; henceforth, humans spent their lives trying to find their other halves. Love inspires wisdom and courage, according to the dialogue, but only when it encourages companionship and the exchange of knowledge, and is not merely the pursuit of sexual gratification.

Illustration of the original humans described in Plato’s Symposium:

In the Timaeus, Plato discusses the creation of the universe and the role of human beings in this universe. Everything proceeds from the Good, argued Plato. However, the Good is not some lifeless abstraction, but a power with a dynamic element. According to More, Plato gave the name of God to this dynamic element. God fashions the universe according to an ideal pattern, but the end result is always less than perfect because of the resistance of the materials and the tendency of material things to always fall short of their perfect ends.

Plato argues that there are powers of good and powers of evil in the universe — and within human beings — and Plato personifies these powers as gods or daemons. There is a struggle between good and evil that all humans participate in, and all are subject to judgment at the ends of their lives (Plato believed in reincarnation and posited that deeds in one’s recent life determined one’s station in the next life.) Here, we see myth and faith enter again into Plato’s philosophy, and More defends the use of these stories and symbols as a means of illustrating the dramas of moral conflict:

In this last stage the essential truth of philosophy as a concern of the individual soul, is rendered vivid and convincing by clothing it in the imaginative garb of fiction — fiction which may yet be a veil, more or less transparent, through which we behold the actual events of the spirit world; and this aid of the imagination is needed just because the dualism of the human consciousness cannot be grasped by the reason, demands indeed a certain abatement of that rationalizing tendency of the mind which, if left to itself, inevitably seeks its satisfaction in one or the other form of monism. (p. 199)

What’s fascinating about Plato’s use of myths in philosophy is that while he recognizes that many of the myths are literally dubious or false, they seem to point to truths that are difficult or impossible to express in literal language. Love really does seem to be a desire to unite with one’s missing half, and falling in love really is akin to madness, a madness that can lead to disaster if one is not careful. Humankind does seem to be afflicted by an internal struggle between a higher, noble nature and a lower nature, with the lower nature inclined to self-centeredness and grasping for ever more wealth, power, and pleasure.

Plato had enormous influence on Western civilization, but More argues that the successors to Plato erred by abandoning Plato’s use of myth to illustrate the duality of human nature. Over the years, Greek philosophy became increasingly rationalistic and prone to a monism that was unable to cope with the reality of human dualism. (For an example of this extreme monism, see the works of Plotinus, who argued for an abstract “One” as the ultimate source of all things.) Hence, argued More, Christianity was in fact the true heir of Platonism, and not the Greek philosophers that came after Plato.

Myth is “the drama of religion,” according to More, not a literally accurate description of a sequence of events. Reason and philosophy can analyze and discuss good and evil, but to fully understand the conflict between good and evil, within and between human beings, requires a dramatic depiction of our swirling, churning passions. In More’s words, “A myth is false and reprehensible in so far as it misses or distorts the primary truth of philosophy and the secondary truth of theology; it becomes more probable and more and more indispensable to the full religious life as it lends insistence and reality to those truths and answers to the daily needs of the soul.” (p. 165) The role of Christian myths in illustrating the dramatic conflict between good and evil will be discussed in the next essay.

The Dynamic Quality of Henri Bergson

Robert Pirsig writes in Lila that Quality contains a dynamic good in addition to a static good. This dynamic good consists of a search for “betterness” that is unplanned and has no specific destination, but is nevertheless responsible for all progress. Once a dynamic good solidifies into a concept, practice, or tradition in a culture, it becomes a static good. Creativity, mysticism, dreams, and even good guesses or luck are examples of dynamic good in action. Religious traditions, laws, and science textbooks are examples of static goods.

Pirsig describes dynamic quality as the “pre-intellectual cutting edge of reality.” By this, he means that before concepts, logic, laws, and mathematical formulas are discovered, there is process of searching and grasping that has not yet settled into a pattern or solution. For example, invention and discovery is often not an outcome of calculation or logical deduction, but of a “free association of ideas” that tends to occur when one is not mentally concentrating at all. Many creative people, from writers to mathematicians, have noted that they came up with their best ideas while resting, engaging in everyday activities, or dreaming.

Dynamic quality is not just responsible for human creation — it is fundamental to all evolution, from the physical level of atoms and molecules, to the biological level of life forms, to the social level of human civilization, to the intellectual level of human thought. Dynamic quality exists everywhere, but it has no specific goals or plans — it always consists of spur-of-the-moment actions, decisions, and guesses about how to overcome obstacles to “betterness.”

It is difficult to conceive of dynamic quality — by its very nature, it is resistant to conceptualization and definition, because it has no stable form or structure. If it did have a stable form or structure, it would not be dynamic.

However the French philosopher Henri Bergson (1859-1941) provided a way to think about dynamic quality, by positing change as the fundamental nature of reality. (See Beyond the “Mechanism” Metaphor in Physics.) In Bergson’s view, traditional reason, science, and philosophy created static, eternal forms and posited these forms as the foundation of reality — but in fact these forms were tools for understanding reality and not reality itself. Reality always flowed and was impossible to fully capture in any static conceptual form. This flow could best be understood through perception rather than conception. Unfortunately, as philosophy created larger and larger conceptual categories, philosophy tended to become dominated by empty abstractions such as “substance,” “numbers,” and “ideas.” Bergson proposed that only an intuitive approach that enlarged perceptual knowledge through feeling and imagination could advance philosophy out of the dead end of static abstractions.

________________________

The Flow of Time

Bergson argued that we miss the flow of time when we use the traditional tools of science, mathematics, and philosophy. Science conceives of time as simply one coordinate in a deterministic space-time block ruled by eternal laws; mathematics conceives of time as consisting of equal segments on a graph; and philosophers since Plato have conceptualized the world as consisting of the passing shadows of eternal forms.

These may be useful conceptualizations, argues Bergson, but they do not truly grasp time. Whether it is an eternal law, a graph, or an eternal form, such depictions are snapshots of reality; they do not and cannot represent the indivisible flow of time that we experience. The laws of science in particular neglected the elements of indeterminism and freedom in the universe. (Henri Bergson once debated Einstein on this topic). The neglect of real change by science was the result of science’s ambition to foresee all things, which motivated scientists to focus on the repeatable and calculable elements of nature, rather than the genuinely new. (The Creative Mind, Mineola, New York: Dover, 2007, p. 3) Those events that could not be predicted were tossed aside as being merely random or unknowable. As for philosophy, Bergson complained that the eternal forms of the philosophers were empty abstractions — the categories of beauty and justice and truth were insufficient to serve as representations of real experience.

Actual reality, according to Bergson, consisted of “unceasing creation, the uninterrupted upsurge of novelty.” (The Creative Mind, p. 7) Time was not merely a coordinate for recording motion in a determinist universe; time was “a vehicle of creation and choice.” (p. 75) The reality of change could not be captured in static concepts, but could only be grasped intuitively. While scientists saw evolution as a combination of mechanism and random change, Bergson saw evolution as a result of a vital impulse (élan vital) that pervaded the universe. Although this vital impetus possessed an original unity, individual life forms used this vital impetus for their own ends, creating conflict between life forms. (Creative Evolution, pp. 50-51)

Biologists attacked Bergson on the grounds that there was no “vital impulse” that they could detect and measure. But biologists argued from the reductionist premise that everything could be explained by reference to smaller parts, and since there was no single detectable force animating life, there was no “vital impetus.” But Bergson’s premise was holistic, referring to the broader action of organic development from lower orders to higher orders, culminating in human beings. There was no separate force — rather entities organized, survived, and reproduced by absorbing and processing energy, in multiple forms. In the words of one eminent biologist, organisms are “resilient patterns . . . in an energy flow.” There is no separate or unique energy of life – just energy.

The Superiority of Perception over Conception

Bergson believed with William James that all knowledge originated in perception and feeling; as human mental powers increased, conceptual categories were created to organize and generalize what we (and others) discovered through our senses. Concepts were necessary to advance human knowledge, of course. But over time, abstract concepts came to dominate human thought to the point at which pure ideas were conceived as the ultimate reality — hence Platonism in philosophy, mathematical Platonism in mathematics, and eternal laws in science. Bergson believed that although we needed concepts, we also needed to rediscover the roots of concepts in perception and feeling:

If the senses and the consciousness had an unlimited scope, if in the double direction of matter and mind the faculty of perceiving was indefinite, one would not need to conceive any more than to reason. Conceiving is a make-shift when perception is not granted to us, and reasoning is done in order to fill up the gaps of perception or to extend its scope. I do not deny the utility of abstract and general ideas, — any more than I question the value of bank-notes. But just as the note is only a promise of gold, so a conception has value only through the eventual perceptions it represents. . . . the most ingeniously assembled conceptions and the most learnedly constructed reasonings collapse like a house of cards the moment the fact — a single fact rarely seen — collides with these conceptions and these reasonings. There is not a single metaphysician, moreover, not one theologian, who is not ready to affirm that a perfect being is one who knows all things intuitively without having to go through reasoning, abstraction and generalisation. (The Creative Mind, pp. 108-9)

In the end, despite their obvious utility, the conceptions of philosophy and science tend “to weaken our concrete vision of the universe.” (p. 111) But we clearly do not have God-like powers to perceive everything, and we are not likely to get such powers. So what do we do? Bergson argues that instead of “trying to rise above our perception of things” through concepts, we “plunge into [perception] for the purpose of deepening it and widening it.” (p. 111) But how exactly are we to do this?

Enlarging Perception

There is one group of people, argues Bergson, that have mastered the ability to deepen and widen perception: artists. From paintings to poetry to novels and musical compositions, artists are able to show us things and events that we do not directly perceive and evoke a mood within us that we can understand even if the particular form that the artist presents may never have been seen or heard by us before. Bergson writes that artists are idealists who are often absent-mindedly detached from “reality.” But it is precisely because artists are detached from everyday living that they are able to see things that ordinary, practical people do not:

[Our] perception . . . isolates that part of reality as a whole that interests us; it shows us less the things themselves than the use we can make of them. It classifies, it labels them beforehand; we scarcely look at the object, it is enough for us to know which category it belongs to. But now and then, by a lucky accident, men arise whose senses or whose consciousness are less adherent to life. Nature has forgotten to attach their faculty of perceiving to their faculty of acting. When they look at a thing, they see it for itself, and not for themselves. They do not perceive simply with a view to action; they perceive in order to perceive — for nothing, for the pleasure of doing so. In regard to a certain aspect of their nature, whether it be their consciousness or one of their senses, they are born detached; and according to whether this detachment is that of a particular sense, or of consciousness, they are painters or sculptors, musicians or poets. It is therefore a much more direct vision of reality that we find in the different arts; and it is because the artist is less intent on utilizing his perception that he perceives a greater number of things. (The Creative Mind, p. 114)

The Method of Intuition

Bergson argued that the indivisible flow of time and the holistic nature of reality required an intuitive approach, that is “the sympathy by which one is transported into the interior of an object in order to coincide with what there is unique and consequently inexpressible in it.” (The Creative Mind, p. 135) Analysis, as in the scientific disciplines, breaks down objects into elements, but this method of understanding is a translation, an insight that is less direct and holistic than intuition. The intuition comes first, and one can pass from intuition to analysis but not from analysis to intuition.

In his essay on the French philosopher Ravaisson, Bergson underscored the benefits and necessity of an intuitive approach:

[Ravaisson] distinguished two different ways of philosophizing. The first proceeds by analysis; it resolves things into their inert elements; from simplification to simplification it passes to what is most abstract and empty. Furthermore, it matters little whether this work of abstraction is effected by a physicist that we may call a mechanist or by a logician who professes to be an idealist: in either case it is materialism. The other method not only takes into account the elements but their order, their mutual agreement and their common direction. It no longer explains the living by the dead, but, seeing life everywhere, it defines the most elementary forms by their aspiration toward a higher form of life. It no longer brings the higher down to the lower, but on the contrary, the lower to the higher. It is, in the real sense of the word, spiritualism. (p. 202)

From Philosophy to Religion

A religious tendency is apparent in Bergson’s philosophical writings, and this tendency grew more pronounced as Bergson grew older. It is likely that Bergson saw religion as a form of perceptual knowledge of the Good, widened by imagination. Bergson’s final major work, The Two Sources of Morality and Religion (Notre Dame, IN: University of Notre Dame Press, 1977) was both a philosophical critique of religion and a religious critique of philosophy, while acknowledging the contributions of both forms of knowledge. Bergson drew a distinction between “static religion,” which he believed originated in social obligations to society, and “dynamic religion,” which he argued originated in mysticism and put humans “in the stream of the creative impetus.” (The Two Sources of Morality and Religion, p. 179)

Bergson was a harsh critic of the superstitions of “static religion,” which he called a “farrago of error and folly.” These superstitions were common in all cultures, and originated in human imagination, which created myths to explain natural events and human history. However, Bergson noted, static religion did play a role in unifying primitive societies and creating a common culture within which individuals would subordinate their interests to the common good of society. Static religion created and enforced social obligations, without which societies could not endure. Religion also provided comfort against the depressing reality of death. (The Two Source of Morality and Religion, pp. 102-22)

In addition, it would be a mistake, Bergson argued, to suppose that one could obtain dynamic religion without the foundation of static religion. Even the superstitions of static religion originated in the human perception of a beneficent virtue that became elaborated into myths. Perhaps thinking that a cool running spring or a warm fire on the hearth as the actions of spirits or gods were a case of imagination run rampant, but these were still real goods, as were the other goods provided by the pagan gods.

Dynamic religion originated in static religion, but also moved above and beyond it, with a small number of exceptional human beings who were able to reach the divine source: “In our eyes, the ultimate end of mysticism is the establishment of a contact . . . with the creative effort which life itself manifests. This effort is of God, if it is not God himself. The great mystic is to be conceived as an individual being, capable of transcending the limitations imposed on the species by its material nature, thus continuing and extending the divine action.” (pp. 220-21)

In Bergson’s view, mysticism is intuition turned inward, to the “roots of our being , and thus to the very principle of life in general.” (p. 250) Rational philosophy cannot fully capture the nature of mysticism, because the insights of mysticism cannot be captured in words or symbols, except perhaps in the word “love”:

God is love, and the object of love: herein lies the whole contribution of mysticism. About this twofold love the mystic will never have done talking. His description is interminable, because what he wants to describe is ineffable. But what he does state clearly is that divine love is not a thing of God: it is God Himself. (p. 252)

Even so, just as the dynamic religion bases its advanced moral insights in part on the social obligations of static religion, dynamic religion also must be propagated through the images and symbols supplied by the myths of static religion. (One can see this interplay of static and dynamic religion in Jesus and Gandhi, both of whom were rooted in their traditional religions, but offered original teachings and insights that went beyond their traditions.)

Toward the end of his life, Henri Bergson strongly considered converting to Catholicism (although the Church had already placed three of Bergson’s works on its Index of Prohibited Books). Bergson saw Catholicism as best representing his philosophical inclinations for knowing through perception and intuition, and for joining the vital impetus responsible for creation. However, Bergson was Jewish, and the anti-Semitism of 1930s and 1940s Europe made him reluctant to officially break with the Jewish people. When the Nazis conquered France in 1940 and the Vichy puppet government of France decided to persecute Jews, Bergson registered with the authorities as a Jew and accepted the persecutions of the Vichy regime with stoicism. Bergson died in 1941 at the age of 81.

Once among the most celebrated intellectuals in the world, today Bergson is largely forgotten. Even among French philosophers, Bergson is much less known than Descartes, Sartre, Comte, and Foucault. It is widely believed that Bergson lost his debate with Einstein in 1922 on the nature of time. (See Jimena Canales, The Physicist and the Philosopher: Einstein, Bergson, and the Debate that Changed Our Understanding of Time, p. 6) But it is recognized today even among physicists that while Einstein’s conception of spacetime in relativity theory is an excellent theory for predicting the motion of objects, it does not disprove the existence of time and real change. It is also true that Bergson’s writings are extraordinarily difficult to understand at times. One can go through pages of dense, complex text trying to understand what Bergson is saying, get suddenly hit with a colorful metaphor that seems to explain everything — and then have a dozen more questions about the meaning of the metaphor. Nevertheless, Bergson remains one of the very few philosophers who looked beyond eternal forms to the reality of a dynamic universe, a universe moved by a vital impetus always creating, always changing, never resting.

Are Human Beings Just Atoms?

In a previous essay on materialism, I discussed the bizarre nature of phenomena on the subatomic level, in which particles have no definite position in space until they are observed. Referencing the works of several physicists and philosophers, I put forth the view that reality consists not of tiny, solid objects but rather bundles of properties and qualities that emerge from potentiality to actuality. In this view, when one breaks down reality into smaller and smaller parts, one does not reach the fundamental units of matter; rather, one is gradually unbundling properties and qualities until the smallest objects no longer even have a definite position in space!

Why is this important? One reason is that the enormous prestige and accomplishments of science have sometimes led us down the wrong path in properly describing and interpreting reality. Science excels at advancing our knowledge of how things work, by breaking down wholes into component parts and manipulating those parts into better arrangements that benefit humanity. This is how we got modern medicine, computers, air conditioning, automobiles, and space travel. However, science sometimes falls short in properly describing and interpreting reality, precisely because it focuses more on the parts than the wholes.

This defect in science becomes particularly glaring when certain scientists attempt to describe what human beings are like. All too often there is a tendency to reduce humans to their component parts, whether these parts are chemical elements (atoms), chemical compounds (molecules), or the much larger molecules known as genes. However, while these component parts make up human beings, there are properties and qualities in human beings that cannot be adequately described in terms of these parts.

Marcelo Gleiser, a physicist at Dartmouth College, argues that “life is the property of a complex network of biochemical reactions . . . a kind of hungry chemistry that is able to duplicate itself.” Biologist Richard Dawkins claims that humans are “just gene machines,” and “living organisms and their bodies are best seen as machines programmed by the genes to propagate those very same genes,” though he qualifies his statement by noting that “there is a very great deal of complication, and indeed beauty in being a gene machine.” Philosopher Daniel Dennett claims that human beings are “moist robots” and the human mind is a collection of computer-like information processes which happen to take place in carbon-based rather than silicon-based hardware.

Now it is true that human beings are composed of atoms that are the basis of chemicals and molecules, that are the basis of chemical compounds, such as genes. The issue, however, is whether describing the parts that compose a human being is the same as describing the whole human being. Yes, human beings are composed of atoms of oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorous. But these atoms can be found in many, many places throughout the universe, in varying quantities and combinations, and they do not have human qualities unless and until they are organized in just the right way. Likewise, genes are ubiquitous in life forms ranging from mammals to lizards to plants to bacteria. Even viruses have genes, though most scientists argue that viruses are not true life forms because they need a host to reproduce. Nevertheless, while human beings share a very few properties and qualities with bacteria and viruses, humans clearly have many properties and qualities that the lower life forms do not.

In fact, recognizing the very difference between life and death can be lost by excessive focus on atoms and molecules. Consider the following: an emergency room doctor treats a patient suffering from a heart attack. Despite the physician’s best efforts, despite all of the doctor’s training and knowledge, the patient dies on the table. So what is the difference between the patient that has died and the patient as he was several hours ago? The quantity and types of atoms composing the body are approximately the same as when the patient was alive. So what has changed? Obviously, the properties and qualities expressed by the organization of the atoms in the human being has changed. The heart no longer supplies blood to the rest of the body, the lungs no longer supply oxygen, the brain no longer has electrical activity, the human being no longer has the ability to run or walk or jump or talk or think or love. Atoms have to be organized in an extremely precise manner in order for these properties and qualities to emerge, and this organization has been lost. So if we are really going to accurately describe what a human being is, we have to refer not just to the atoms, but to the overall organization or form.

The issue of form is what separates the ancient Greek philosophers Democritus and Plato. Both philosophers believed that the universe and everything in it was composed of atoms; but Democritus thought that nothing existed but atoms and the void (space), whereas Plato believed that atoms were arranged by a creator, who, being essentially good, used ideal forms as a blueprint. Contrary to the views of Judaism, Christianity, and Islam, however, Plato believed that the creator was not omnipotent, and was forced to work with imperfect matter to do the best job possible, which is why most created objects and life forms were imperfect and fell short of the ideal forms.

Democritus would no doubt dismiss Plato’s ideal forms as being unreal — after all, forms are not something solid, so how can anything that is not solid, not made of material, exist at all? But as I’ve pointed out, the atoms that compose the human body are found everywhere, whereas actual, living human beings have these same atoms organized in a precise, particular form. In other words, in order to understand anything, it is not enough to break it down into parts and study the parts; one has to look at the whole. The properties and qualities of a living human being, as a whole, definitely do exist, or we would not know how to distinguish a living human being from a dead human being or any other existing thing composed of the same atoms.

The debate between Democritus and Plato points to a difference in ways of knowing that persist to this day: analytic knowledge and holistic knowledge. Analytic knowledge is pursued by science and reason; holistic knowledge is pursued by religion, art, and the humanities. The prestige of science and its technological accomplishments has elevated analytic understanding above all other forms of knowledge, but we remain lost without holistic understanding.

What precisely is “analytic knowledge”? The word “analyze” means “to study or determine the nature and relationship of the parts (of something) by analysis.” Synonyms for “analyze” include “break down,” “cut,” “deconstruct,” and “dissect.” In fact, the word “analysis” is derived from the New Latin word analyein, meaning “to break up.” Analysis is an extremely valuable tool and is responsible for human progress in all sorts of areas. But the knowledge derived from analysis is primarily a description and guide to how things work. It reduces knowledge of the whole to knowledge of the parts, which is fine if you want to take something apart and put it back together. But the knowledge of how things work is not the same as the knowledge of what things are as a whole, what qualities and properties they have, and the value of those qualities and properties. This latter knowledge is holistic knowledge.

The word “holism,” based on the ancient Greek word for “whole” (holos), was coined in the early twentieth century in order to promote the view that all systems, living or not, should be viewed as wholes and not just as a collection of parts or the sum of parts. It’s no accident that the words “whole,” “heal,” healthy,” and “holy” are linguistically related. The problems of sickness, malnutrition, and injury were well-known to the ancients, and it was natural for them to see these problems as a disturbance to the whole human being, rendering a person incomplete and missing certain vital functions. Wholeness was an ideal end, which made wholeness sacred (holy) as well. (For an extended discussion of analytic/reductionist knowledge vs. holistic knowledge, see this post.)

Holistic knowledge is not just about ideal physical health. It’s about ideal forms in all aspects, including the qualities we associate with human beings we admire: wisdom, strength, beauty, courage, love, kindness. As mistaken as religions have been in understanding natural causation, it is the devotion to ideal forms that is really the essence of religion. The ancient Greeks worshipped excellence, as embodied in their gods; Confucians were devoted to family ties and duties; the Jews submitted themselves to the laws of the one God; Christians devoted themselves to the love of God, embodied in Christ.

Holistic knowledge provides no guidance as to how to conduct surgery or build a computer or launch a rocket; but it does provide insight into the ethics of medicine, the desirability or hazards of certain types of technology, and the proper ends of human beings. All too often, contemporary secular societies expect new technologies to improve human lives and pay no heed to ideal human forms, on the assumption that ideal forms are a fantasy. Then we are shocked when the new technologies are abused and not only bring out the worst in human nature but enhance the power of the worst.

Materialism: There’s Nothing Solid About It!

[I]n truth there are only atoms and the void.” – Democritus

In the ancient Greek transition from mythos to logos, stories about the world and human lives being shaped by gods and goddesses gradually came to be replaced by new explanations from philosophers. Among these philosophers were the “atomists,” including Leucippus and Democritus. Later, the Roman philosopher and poet Lucretius expounded an atomist view of the universe. The atomists were regarded as being among the first atheists and the first materialists — if they did acknowledge the existence of the gods (probably due to public pressures), they argued that the gods had no active influence on the world. Although the atomists’ understanding of the atom was primitive and far from our modern scientific understanding — they did not possess particle accelerators, after all — they were remarkably farsighted about the actual workings of nature. To this day, the symbol of the American Atheists is a depiction of the atom:

However, the ancient atomists’ conception of how the universe is constructed, with solid particles of matter combining to make complex organizational structures, has become problematic given the findings of atomic physics in the past hundred years. Increasingly, scientists have found that reality consists not of solid matter, but of organizational principles and qualities that give us the impression of solidity. And while this new view does not restore the Greek gods to prominence, it does raise questions about how we ought to understand and interpret reality.

_________________________

 

Leucippus and Democritus lived in the fifth century BC. While it is difficult to disentangle their views because of gaps in the historical record, both philosophers argued that all existence was ultimately based on tiny, indestructible particles (“atoms”) and empty space. While not explicitly denying the existence of the gods, the philosophy of Leucippus and Democritus made it clear that the gods had no significant role in the creation or maintenance of the universe. Rather, atoms existed eternally and moved randomly in empty space, until they collided and began to form larger units, leading to the growth of stars and planets and various life forms. The differences between types of matter, such as iron, water, and air were due to differences in the atoms that composed this matter. Atoms could join with each other because of a variety of hooks or sockets in the atoms that allowed for attachments.

Hundreds of years later, the Roman philosopher Lucretius expanded upon atomist theory in his poem De rerum natura (On the Nature of Things). Lucretius explained that the universe consisted of an infinite number of atoms moving and combining under the influence of laws and random chance, not the decisions of gods. Lucretius also denied the existence of an afterlife, and argued that human beings should not fear death. Although Lucretius was not explicitly atheistic, his work was perceived by Christians in the Middle Ages as being essentially atheistic in outlook and was denounced for that reason.

Not all of the ancient philosophers, even those most committed to reason, accepted the atomist view of existence. It is reported that Plato hated Democritus and wished that his books be burned. Plato did accept that there were different types of matter composing the world, but posited that the particles were perfect triangles, brought together in various combinations. In addition, these triangles were guided by a cosmic intelligence, and were not colliding randomly without purpose. For Plato, the ultimate reality was the Good, and the things we saw all around us were shadows of perfect, ideal forms that were the blueprint for the less-perfect existing things.

For two thousand years after Democritus, atomism as a worldview remained a minority viewpoint — after all, religion was still an important institution in societies, and no one had yet seen or confirmed the existence of atoms. But by the nineteenth century, advances in science had accumulated to the point at which atomism became increasingly popular as a view of reality. No longer was there a need for God or gods to explain nature and existence; atoms and laws were all that were needed. The philosophy of materialism — the view that matter is the fundamental substance in nature and that all things, including mental aspects and consciousness, are results of material interactions — became increasingly prevalent. The political-economic ideology of communism, which at one time ruled one-third of the world’s population, was rooted in materialism. In fact, Karl Marx wrote his doctoral dissertation on Democritus’ philosophy of nature, and Vladimir Lenin authored a philosophical book on materialism, including chapters on physics, that was mandatory reading in the higher education system of the Soviet Union.

As physicists conducted increasingly sophisticated experiments on the smallest parts of nature, however, certain results began to challenge the view that atoms were solid particles of matter. For one thing, it was found that atoms themselves were not solid throughout but consisted of electrons orbiting around an extremely small nucleus of protons and neutrons. The nucleus of an atom is actually 100,000 times smaller than the entire atom, even though the nucleus contains almost the entire mass of the atom. As one article has put it, “if the nucleus were the size of a peanut, the atom would be about the size of a baseball stadium.” For that reason, some have concluded that all “solid” objects in the universe, including human beings, are actually about 99.9999999 percent empty space, because of the empty space in the atoms! Others respond that in fact it is not “empty space” in the atom, but rather a “field” or “wave function” — and here it gets confusing.

In fact, subatomic particles do not have a precise location in space; they behave like a fuzzy wave until they interact with an observerand then the wave “collapses” into a particle. The bizarreness of this activity confounded the brightest scientists in the world, and to this day, there are arguments among scientists about what is “really” going on at the subatomic level.

The currently dominant interpretation of subatomic physics, known as the “Copenhagen interpretation,” was developed by the physicists Werner Heisenberg and Niels Bohr in the 1920s. Heisenberg subsequently wrote a book, Physics and Philosophy to explain how atomic physics changed our interpretation of reality. According to Heisenberg, the traditional scientific view of material objects and particles existing objectively, whether we observe them or not, could no longer be upheld. Rather than existing as solid objects, subatomic particles existed as “probability waves” — in Heisenberg’s words, “something standing in the middle between the idea of an event and the actual event, a strange kind of physical reality just in the middle between possibility and reality.” (Physics and Philosophy, p. 41 — page numbers are taken from the 1999 edition published by Prometheus books). According to Heisenberg:

The probability function does . . . not describe a certain event but, at least during the process of observation, a whole ensemble of possible events. The observation itself changes the probability function discontinuously; it selects of all possible events the actual one that has taken place. . . Therefore, the transition from the ‘possible’ to the ‘actual’ takes place during the act of observation. If we want to describe what happens in an atomic event, we have to realize that the word ‘happens’ can apply only to the observation, not to the state of affairs between two observations. It applies to the physical, not the psychical act of observation, and we may say that the transition from the ‘possible’ to the ‘actual’ takes place as soon as the interaction of the object with the measuring device, and thereby with the rest of the world, has come into play. (pp. 54-55)

Later in his book, Heisenberg writes: “If one wants to give an accurate description of the elementary particle — and here the emphasis is on the word ‘accurate’ — the only thing that can be written down as a description is a probability function.” (p. 70) Moreover,

In the experiments about atomic events we have to do with things and facts, with phenomena that are just as real as any phenomena in daily life. But the atoms or the elementary particles themselves are not as real; they form a world of potentialities or possibilities rather than one of things or facts. (p. 186)

This sounds downright crazy to most people. The idea that the solid objects of our everyday experience are made up not of smaller solid parts but of probabilities and potentialities seems bizarre. However, Heisenberg noted that observed events at the subatomic level did seem to fit the interpretation of reality given by the Greek philosopher Aristotle over 2000 years ago. According to Aristotle, reality was a combination of matter and form, but matter was not a set of solid particles but rather potential, an indefinite possibility or power that became real only when it was combined with form to make actual existing things. (pp. 147-49) To provide some rough analogies: a supply of wood can potentially be a table or a chair or a house — but it must be combined with the right form to become actually a table or a chair or a house. Likewise, a block of marble is potentially a statue of a man or a woman or an animal, but only when a sculptor shapes the marble into that particular form does the statue become actual. In other words, actuality (reality) equals potential plus form.

According to Heisenberg, Aristotle’s concept of potential was roughly equivalent to the concept of “energy” in modern physics, and “matter” was energy combined with form.

All the elementary particles are made of the same substance, which we may call energy or universal matter; they are just different forms in which the matter can appear.

If we compare this situation with the Aristotelian concepts of matter and form, we can say that the matter of Aristotle, which is mere ‘potential,’ should be compared to our concept of energy, which gets into ‘actuality’ by means of the form, when the elementary particle is created. (p. 160)

In fact, all modern physicists agree that matter is simply a form of energy (and vice versa). In the earliest stages of the universe, matter emerged out of energy, and that is how we got atoms in the first place. There is nothing inherently “solid” about energy, but energy can be transformed into particles, and particles can be transformed back into energy. According to Heisenberg, “Energy is in fact the substance from which all elementary particles, all atoms and therefore all things are made. . . .” (p. 63)

So what exactly is energy? Oddly enough, physicists have a hard time stating exactly what energy is. Energy is usually defined as the “capacity to do work” or the “capacity to cause movement,” but these definitions remain somewhat vague, and there is no specific mechanism or form that physicists can point to in order to describe energy. Gottfried Leibniz, who developed the first formula for measuring energy, referred to energy as vis viva or “living force,” a concept which is anthropomorphic and nearly theological.  In fact, there are so many different types of energy and so many different ways to measure these types of energy that many physicists are inclined to the view that energy is not a substance but just a mathematical abstraction. According to the great American physicist Richard Feynman, “It is important to realize that in physics today, we have no knowledge of what energy ‘is.’ We do not have a picture that energy comes in little blobs of a definite amount. It is not that way. It is an abstract thing in that it does not tell us the mechanism or the reason for the various formulas.” The only reason physicists know that energy exists is that they have performed numerous experiments over the years and have found that however energy is measured, the amount of energy in an isolated system always remains the same — energy can only be transformed, it can neither be created nor destroyed. Energy in itself has no form, and there is no such thing as “pure energy.” Oh, and energy is relative too — you have to specify the frame of reference when measuring energy, because the position and movement of the observer matters. For example, if you move toward a photon, its energy in that frame of reference will be greater; if you move away from a photon, its energy will be less.

In fact, the melding of relativity theory with quantum physics has further undermined materialism and our common sense notions of what it is to be “real.”  A 2013 article in Scientific American by Dr. Meinard Kuhlmann of Bielefeld University in Germany, “What is Real,” lays out some of these paradoxes of existence at the subatomic level. For example, scientists can create a vacuum in the laboratory, but when a Geiger counter is connected to the vacuum container, it will detect matter. In addition, a vacuum will contain no particles according to an observer at rest, but will contain many particles from the perspective of an accelerating observer! Kuhlmann concludes: “If the number of particles is observer-dependent, then it seems incoherent to assume that particles are basic. We can accept many features to be observer-dependent but not the fact of how many basic building blocks there are.”

So, if the smallest parts of reality are not tiny material objects, but potentialities and probabilities, which vary according to the observer, then how do we get what appears to be solid material objects, from rocks to mountains to trees to houses and cars? According to Kuhlmann, some philosophers and scientists say that we need to think about reality as consisting entirely of relations. In this view, subatomic particles have no definite position in space until they are observed because determining position in space requires a relation between an observer and observed. Position is mere potential until there is a relation. You may have heard of the old puzzle, “If a tree falls in a forest, and no one is around to hear it, does it make a sound?” The answer usually given is that sound requires a perceiver who can hear, and it makes no sense to talk about “sound” without an observer with functional ears. In the past, scientists believed that if objects were broken down into their smallest parts, we would discover the foundation of reality; but in the new view, when you break down larger objects into their smallest parts, you are gradually taking apart the relations that compose the object, until what you have left is potential. It is the relations between subatomic particles and observers that give us solidity.

Another interpretation Kuhlmann discusses is that the fundamental basis of reality is bundles of properties. In this view, reality consists not of objects or things, but of properties such as shape, mass, color, position, velocity, spin, etc. We think of things as being fundamentally real and properties as being attributes of things. But in this new view, properties are fundamentally real and “things” are what we get when properties are bundled together in certain ways. For example, we recognize a red rubber ball as being a red rubber ball because our years of experience and learning in our culture have given us the conceptual category of “red rubber ball.” An infant does not have this conceptual category, but merely sees the properties: the roundness of the shape, the color red, the elasticity of the rubber. As the infant grows up, he or she learns that this bundle of properties constitutes the “thing” known as a red rubber ball; but it is the properties that are fundamental, not the thing. So when scientists break down objects into smaller and smaller pieces in their particle accelerators, they are gradually taking apart the bundles of properties until the particles no longer even have a definite position in space!

So whether we thing of reality as consisting of relations or bundles of properties, there is nothing “solid” underlying everything.  Reality consists of properties or qualities that emerge out of potential, and then bundle together in certain ways. Over time, some bundles or relations come apart, and new bundles or relations emerge. Finally, in the evolution of life, there is an explosion of new bundles of properties, with some bundles containing a staggering degree of organizational complexity, built incrementally over millions of years. The proper interpretation of this organizational complexity will be discussed in a subsequent post.

 

What Does Science Explain? Part 5 – The Ghostly Forms of Physics

The sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work — that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain esthetic criteria — that is, in relation to how much it describes, it must be rather simple. — John von Neumann (“Method in the Physical Sciences,” in The Unity of Knowledge, 1955)

Now we come to the final part of our series of posts, “What Does Science Explain?” (If you have not already, you can peruse parts 1, 2, 3, and 4 here). As I mentioned in my previous posts, the rise of modern science was accompanied by a change in humanity’s view of metaphysics, that is, our theory of existence. Medieval metaphysics, largely influenced by ancient philosophers, saw human beings as the center or summit of creation; furthermore, medieval metaphysics proposed a sophisticated, multifaceted view of causation. Modern scientists, however, rejected much of medieval metaphysics as subjective and saw reality as consisting mainly of objects impacting or influencing each other in mathematical patterns.  (See The Metaphysical Foundations of Modern Science by E.A. Burtt.)

I have already critically examined certain aspects of the metaphysics of modern science in parts 3 and 4. For part 5, I wish to look more closely at the role of Forms in causation — what Aristotle called “formal causation.” This theory of causation was strongly influenced by Aristotle’s predecessor Plato and his Theory of Forms. What is Plato’s “Theory of Forms”? In brief, Plato argued that the world we see around us — including all people, trees, and animals, stars, planets and other objects — is not the true reality. The world and the things in it are imperfect and perishable realizations of perfect forms that are eternal, and that continually give birth to the things we see. That is, forms are the eternal blueprints of perfection which the material world imperfectly represents. True philosophers do not focus on the material world as it is, but on the forms that material things imperfectly reflect. In order to judge a sculpture, painting, or natural setting, a person must have an inner sense of beauty. In order to evaluate the health of a particular human body, a doctor must have an idea of what a perfectly healthy human form is. In order to evaluate a government’s system of justice, a citizen must have an idea about what perfect justice would look like. In order to critically judge leaders, citizens must have a notion of the virtues that such a leader should have, such as wisdom, honesty, and courage.  Ultimately, according to Plato, a wise human being must learn and know the perfect forms behind the imperfect things we see: we must know the Form of Beauty, the Form of Justice, the Form of Wisdom, and the ultimate form, the Form of Goodness, from which all other forms flow.

Unsurprisingly, many intelligent people in the modern world regard Plato’s Theory of Forms as dubious or even outrageous. Modern science teaches us that sure knowledge can only be obtained by observation and testing of real things, but Plato tells us that our senses are deceptive, that the true reality is hidden behind what we sense. How can we possibly confirm that the forms are real? Even Plato’s student Aristotle had problems with the Theory of Forms and argued that while the forms were real, they did not really exist until they were manifested in material things.

However, there is one important sense in which modern science retained the notion of formal causation, and that is in mathematics. In other words, most scientists have rejected Plato’s Theory of Forms in all aspects except for Plato’s view of mathematics. “Mathematical Platonism,” as it is called, is the idea that mathematical forms are objectively real and are part of the intrinsic order of the universe. However, there are also sharp disagreements on this subject, with some mathematicians and scientists arguing that mathematical forms are actually creations of the human imagination.

The chief difference between Plato and modern scientists on the study of mathematics is this: According to Plato, the objects of geometry — perfect squares, perfect circles, perfect planes — existed nowhere in the material world; we only see imperfect realizations. But the truly wise studied the perfect, eternal forms of geometry rather than their imperfect realizations. Therefore, while astronomical observations indicated that planetary bodies orbited in imperfect circles, with some irregularities and errors, Plato argued that philosophers must study the perfect forms instead of the actual orbits! (The Republic, XXVI, 524D-530C) Modern science, on the other hand, is committed to observation and study of real orbits as well as the study of perfect mathematical forms.

Is it tenable to hold the belief that Plato and Aristotle’s view of eternal forms is mostly subjective nonsense, but they were absolutely right about mathematical forms being real? I argue that this selective borrowing of the ancient Greeks doesn’t quite work, that some of the questions and difficulties with proving the reality of Platonic forms also afflicts mathematical forms.

The main argument for mathematical Platonism is that mathematics is absolutely necessary for science: mathematics is the basis for the most important and valuable physical laws (which are usually in the form of equations), and everyone who accepts science must agree that the laws of nature or the laws of physics exist. However, the counterargument to this claim is that while mathematics is necessary for human beings to conduct science and understand reality, that does not mean that mathematical objects or even the laws of nature exist objectively, that is, outside of human minds.

I have discussed some of the mysterious qualities of the “laws of nature” in previous posts (here and here). It is worth pointing out that there remains a serious debate among philosophers as to whether the laws of nature are (a) descriptions of causal regularities which help us to predict or (b) causal forces in themselves. This is an important distinction that most people, including scientists, don’t notice, although the theoretical consequences are enormous. Physicist Kip Thorne writes that laws “force the Universe to behave the way it does.” But if laws have that kind of power, they must be ubiquitous (exist everywhere), eternal (exist prior to the universe), and have enormous powers although they have no detectable energy or mass — in other words, the laws of nature constitute some kind of supernatural spirit. On the other hand, if laws are summary descriptions of causation, these difficulties can be avoided — but then the issue arises: do the laws of nature or of physics really exist objectively, outside of human minds, or are they simply human-constructed statements about patterns of causation? There are good reasons to believe the latter is true.

The first thing that needs to be said is that nearly all these so-called laws of nature are actually approximations of what really happens in nature, approximations that work only under certain restrictive conditions. Both of these considerations must be taken into account, because even the approximations fall apart outside of certain pre-specified conditions. Newton’s law of universal gravitation, for example, is not really universal. It becomes increasingly inaccurate under conditions of high gravity and very high velocities, and at the atomic level, gravity is completely swamped by other forces. Whether one uses Newton’s law depends on the specific conditions and the level of accuracy one requires. Kepler’s laws of planetary motion are an approximation based on the simplifying assumption of a planetary system consisting of one planet. The ideal gas law is an approximation which becomes inaccurate under conditions of low temperature and/or high pressure. The law of multiple proportions works for simple molecular compounds, but often fails for complex molecular compounds. Biologists have discovered so many exceptions to Mendel’s laws of genetics that some believe that Mendel’s laws should not even be considered laws.

The fact of the matter is that even with the best laws that science has come up with, we still can’t predict the motions of more than two interacting astronomical bodies without making unrealistic simplifying assumptions. Michael Scriven, a mathematician and philosopher at Claremont Graduate University, has concluded that the laws of nature or physics are actually cobbled together by scientists based on multiple criteria:

Briefly we may say that typical physical laws express a relationship between quantities or a property of systems which is the simplest useful approximation to the true physical behavior and which appears to be theoretically tractable. “Simplest” is vague in many cases, but clear for the extreme cases which provide its only use. “Useful” is a function of accuracy and range and purpose. (Michael Scriven, “The Key Property of Physical Laws — Inaccuracy,” in Current Issues in the Philosophy of Science, ed. Herbert Feigl)

The response to this argument is that it doesn’t disprove the objective existence of physical laws — it simply means that the laws that scientists come up with are approximations to real, objectively existing underlying laws. But if that is the case, why don’t scientists simply state what the true laws are? Because the “laws” would actually end up being extremely long and complex statements of causation, with so many conditions and exceptions that they would not really be considered laws.

An additional counterargument to mathematical Platonism is that while mathematics is necessary for science, it is not necessary for the universe. This is another important distinction that many people overlook. Understanding how things work often requires mathematics, but that doesn’t mean the things in themselves require mathematics. The study of geometry has given us pi and the Pythagorean theorem, but a child does not need to know these things in order to draw a circle or a right triangle. Circles and right triangles can exist without anyone, including the universe, knowing the value of pi or the Pythagorean theorem. Calculus was invented in order to understand change and acceleration; but an asteroid, a bird, or a cheetah is perfectly capable of changing direction or accelerating without needing to know calculus.

Even among mathematicians and scientists, there is a significant minority who have argued that mathematical objects are actually creations of the human imagination, that math may be used to model aspects of reality, but it does not necessarily do so. Mathematicians Philip J. Davis and Reuben Hersh argue that mathematics is the study of “true facts about imaginary objects.” Derek Abbot, a professor of engineering, writes that engineers tend to reject mathematical Platonism: “the engineer is well acquainted with the art of approximation. An engineer is trained to be aware of the frailty of each model and its limits when it breaks down. . . . An engineer . . . has no difficulty in seeing that there is no such a thing as a perfect circle anywhere in the physical universe, and thus pi is merely a useful mental construct.” (“The Reasonable Ineffectiveness of Mathematics“) Einstein himself, making a distinction between mathematical objects used as models and pure mathematics, wrote that “As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality.” Hartry Field, a philosopher at New York University, has argued that mathematics is a useful fiction that may not even be necessary for science. Field goes to show that it is possible to reconstruct Newton’s theory of gravity without using mathematics. (There is more discussion on this subject here and here.)

So what can we conclude about the existence of forms? I have to admit that although I’m skeptical, I have no sure conclusions. It seems unlikely that forms exist outside the mind . . . but I can’t prove they don’t exist either. Forms do seem to be necessary for human reasoning — no thinking human can do without them. And forms seem to be rooted in reality: perfect circles, perfect squares, and perfect human forms can be thought of as imaginative projections of things we see, unlike Sherlock Holmes or fire-breathing dragons or flying spaghetti monsters, which are more creatively fictitious. Perhaps one could reconcile these opposing views on forms by positing that the human mind and imagination is part of the universe itself, and that the universe is becoming increasingly consciously aware.

Another way to think about this issue was offered by Robert Pirsig in Zen and the Art of Motorcycle Maintenance. According to Pirsig, Plato made a mistake by positing Goodness as a form. Even considered as the highest form, Goodness (or “Quality,” in Pirsig’s terminology) can’t really be thought of as a static thing floating around in space or some otherworldly realm. Forms are conceptual creations of humans who are responding to Goodness (Quality). Goodness itself is not a form, because it is not an unchanging thing — it is not static or even definable. It is “reality itself, ever changing, ultimately unknowable in any kind of fixed, rigid way.” (p. 342) Once we let go of the idea that Goodness or Quality is a form, we can realize that not only is Goodness part of reality, it is reality.

As conceptual creations, ideal forms are found in both science and religion. So why, then, does there seem to be such a sharp split between science and religion as modes of knowledge? I think it comes down to this: science creates ideal forms in order to model and predict physical phenomena, while religion creates ideal forms in order to provide guidance on how we should live.

Scientists like to see how things work — they study the parts in order to understand how the wholes work. To increase their understanding, scientists may break down certain parts into smaller parts, and those parts into even smaller parts, until they come to the most fundamental, indivisible parts. Mathematics has been extremely useful in modeling and understanding these parts of nature, so scientists create and appreciate mathematical forms.

Religion, on the other hand, tends to focus on larger wholes. The imaginative element of religion envisions perfect states of being, whether it be the Garden of Eden or the Kingdom of Heaven, as well as perfect (or near perfect) humans who serve as prophets or guides to a better life. Religion is less concerned with how things work than with how things ought to work, how things ought to be. So religion will tend to focus on subjects not covered by science, including the nature and meaning of beauty, love, and justice. There will always be debates about the appropriateness of particular forms in particular circumstances, but the use of forms in both science and religion is essential to understanding the universe and our place in it.

What is “Mythos” and “Logos”?

The terms “mythos” and “logos” are used to describe the transition in ancient Greek thought from the stories of gods, goddesses, and heroes (mythos) to the gradual development of rational philosophy and logic (logos). The former is represented by the earliest Greek thinkers, such as Hesiod and Homer; the latter is represented by later thinkers called the “pre-Socratic philosophers” and then Socrates, Plato, and Aristotle. (See the book: From Myth to Reason? Studies in the Development of Greek Thought).

In the earliest, “mythos” stage of development, the Greeks saw events of the world as being caused by a multitude of clashing personalities — the “gods.” There were gods for natural phenomena such as the sun, the sea, thunder and lightening, and gods for human activities such as winemaking, war, and love. The primary mode of explanation of reality consisted of highly imaginative stories about these personalities. However, as time went on, Greek thinkers became critical of the old myths and proposed alternative explanations of natural phenomena based on observation and logical deduction. Under “logos,” the highly personalized worldview of the Greeks became transformed into one in which natural phenomena were explained not by invisible superhuman persons, but by impersonal natural causes.

However, many scholars argue that there was not such a sharp distinction between mythos and logos historically, that logos grew out of mythos, and elements of mythos remain with us today.

For example, ancient myths provided the first basic concepts used subsequently to develop theories of the origins of the universe. We take for granted the words that we use every day, but the vast majority of human beings never invent a single word or original concept in their lives — they learn these things from their culture, which is the end-product of thousands of years of speaking and writing by millions of people long-dead. The very first concepts of “cosmos,” “beginning,” nothingness,” and differentiation from a single substance — these were not present in human culture for all time, but originated in ancient myths. Subsequent philosophers borrowed these concepts from the myths, while discarding the overly-personalistic interpretations of the origins of the universe. In that sense, mythos provided the scaffolding for the growth of philosophy and modern science. (See Walter Burkert, “The Logic of Cosmogony” in From Myth to Reason: Studies in the Development of Greek Thought.)

An additional issue is the fact that not all myths are wholly false. Many myths are stories that communicate truths even if the characters and events in the story are fictional. Socrates and Plato denounced many of the early myths of the Greeks, but they also illustrated philosophical points with stories that were meant to serve as analogies or metaphors. Plato’s allegory of the cave, for example, is meant to illustrate the ability of the educated human to perceive the true reality behind surface impressions. Could Plato have made the same philosophical point in a literal language, without using any stories or analogies? Possibly, but the impact would be less, and it is possible that the point would not be effectively communicated at all.

Some of the truths that myths communicate are about human values, and these values can be true even if the stories in which the values are embedded are false. Ancient Greek religion contained many preposterous stories, and the notion of personal divine beings directing natural phenomena and intervening in human affairs was false. But when the Greeks built temples and offered sacrifices, they were not just worshiping personalities — they were worshiping the values that the gods represented. Apollo was the god of light, knowledge, and healing; Hera was the goddess of marriage and family; Aphrodite was the goddess of love; Athena was the goddess of wisdom; and Zeus, the king of the gods, upheld order and justice. There’s no evidence at all that these personalities existed or that sacrifices to these personalities would advance the values they represented. But a basic respect for and worshipful disposition toward the values the gods represented was part of the foundation of ancient Greek civilization. I don’t think it was a coincidence that the city of Athens, whose patron goddess was Athena, went on to produce some of the greatest philosophers the world has seen — love of wisdom is the prerequisite for knowledge, and that love of wisdom grew out of the culture of Athens. (The ancient Greek word philosophia literally means “love of wisdom.”)

It is also worth pointing out that worship of the gods, for all of its superstitious aspects, was not incompatible with even the growth of scientific knowledge. Modern western medicine originated in the healing temples devoted to the god Asclepius, the son of Apollo, and the god of medicine. Both of the great ancient physicians Hippocrates and Galen are reported to have begun their careers as physicians in the temples of Asclepius, the first hospitals. Hippocrates is widely regarded as the father of western medicine and Galen is considered the most accomplished medical researcher of the ancient world. As love of wisdom was the prerequisite for philosophy, reverence for healing was the prerequisite for the development of medicine.

Karen Armstrong has written that ancient myths were never meant to be taken literally, but were “metaphorical attempts to describe a reality that was too complex and elusive to express in any other way.” (A History of God) I am not sure that’s completely accurate. I think it most likely that the mass of humanity believed in the literal truth of the myths, while educated human beings understood the gods to be metaphorical representations of the good that existed in nature and humanity. Some would argue that this use of metaphors to describe reality is deceptive and unnecessary. But a literal understanding of reality is not always possible, and metaphors are widely used even by scientists.

Theodore L. Brown, a professor emeritus of chemistry at the University of Illinois at Urbana-Champaign, has provided numerous examples of scientific metaphors in his book, Making Truth: Metaphor in Science. According to Brown, the history of the human understanding of the atom, which cannot be directly seen, began with a simple metaphor of atoms as billiard balls; later, scientists compared atoms to plum pudding; then they compared the atom to our solar system, with electrons “orbiting” around a nucleus. There has been a gradual improvement in our models of the atom over time, but ultimately, there is no single, correct literal representation of the atom. Each model illustrates an aspect or aspects of atomic behavior — no one model can capture all aspects accurately. Even the notion of atoms as particles is not fully accurate, because atoms can behave like waves, without a precise position in space as we normally think of particles as having. The same principle applies to models of the molecule as well. (Brown, chapters, 4-6)  A number of scientists have compared the imaginative construction of scientific models to map-making — there is no single, fully accurate way to map the earth (using a flat surface to depict a sphere), so we are forced to use a variety of maps at different scales and projections, depending on our needs.

Sometimes the visual models that scientists create are quite unrealistic. The model of the “energy landscape” was created by biologists in order to understand the process of protein folding — the basic idea was to imagine a ball rolling on a surface pitted with holes and valleys of varying depth. As the ball would tend to seek out the low points on the landscape (due to gravity), proteins would tend to seek the lowest possible free energy state. All biologists know the energy landscape model is a metaphor — in reality, proteins don’t actually go rolling down hills! But the model is useful for understanding a process that is highly complex and cannot be directly seen.

What is particularly interesting is that some of the metaphorical models of science are frankly anthropomorphic — they are based on qualities or phenomena found in persons or personal institutions. Scientists envision cells as “factories” that accept inputs and produce goods. The genetic structure of DNA is described as having a “code” or “language.” The term “chaperone proteins” was invented to describe proteins that have the job of assisting other proteins to fold correctly; proteins that don’t fold correctly are either treated or dismantled so that they do not cause damage to the larger organism — a process that has been given a medical metaphor: “protein triage.” (Brown, chapters 7-8) Even referring to the “laws of physics” is to use a metaphorical comparison to human law. So even as logos has triumphed over the mythos conception that divine personalities rule natural phenomena, qualities associated with personal beings have continued to sneak into modern scientific models.

The transition of a mythos-dominated worldview to a logos-dominated worldview was a stupendous achievement of the ancient Greeks, and modern philosophy, science, and civilization would not be possible without it. But the transition did not involve a complete replacement of one worldview with another, but rather the building of additional useful structures on top of a simple foundation. Logos grew out of its origins in mythos, and retains elements of mythos to this day. The compatibilities and conflicts between these two modes of thought are the thematic basis of this website.

Related: A Defense of the Ancient Greek Pagan Religion

Two Types of Religion

Debates about religion in the West tend to center around the three monotheistic religions — Judaism, Christianity, and Islam.  However, it is important to note that these three religions are not necessarily typical or representative of religion in general.

In fact, there are many different types of religion, but for purposes of simplicity I would like to divide the religions of the world into two types: revealed religion and philosophical religion.  These two categories are not exclusive, and many religions overlap both categories, but I think it is a useful conceptual divide.

“Revealed religion” has been defined as a “religion based on the revelation by God to man of ideas that he would not have arrived at by his natural reason alone.”  The three monotheistic religions all belong in this category, though there are philosophers and elements of philosophy in these religions as well.  Most debates about religion and science, or religion and reason, assume that all religions are revealed religions.  However, there is another type of religion: philosophical religion.

Philosophical religion can be defined as a set of religious beliefs that are arrived at primarily through reason and dialogue among philosophers.  The founders of philosophical religion put forth ideas on the basis that these ideas are human creations accessible to all and subject to discussion and debate like any other idea.  These religions are found in the far east, and include Confucianism, Taoism, and Hinduism.  However, there are also philosophical religions in the West, such as Platonism or Stoicism, and there have been numerous philosophers who have constructed philosophical interpretations of the three monotheistic religions as well.

There are a number of crucial distinguishing characteristics that separate revealed religion from philosophical religion.

Revealed religion originates in a single prophet, who claims to have direct communication with God.  Even when historical research indicates multiple people playing a role in founding a revealed religion, as well as the borrowing of concepts from other religions, the tradition and practice of revealed religion generally insists upon the unique role of a prophet who is usually regarded as infallible or close to infallible — Moses, Jesus, or Muhammad.  Revealed religion also insists on the existence of God, often defined as a personal, supreme being who has the qualities of omniscience and omnipotence.  (It may seem obvious to many that all religions are about God, but that is not the case, as will be discussed below.)

Faith is central to revealed religion.  Rational argument and evidence may be used to convince others of the merits of a revealed religion, but ultimately there are too many fundamental beliefs in a revealed religion that are either non-demonstrable or contradictory to evidence from science, history, and archeology.  Faith may be used positively, as an aid to making a decision in the absence of clear evidence, so that one does not sustain loss from despair and a paralysis of will; however, faith may also be used negatively, to deny or ignore findings from other fields of knowledge.

The problems with revealed religion are widely known: these religions are prone to a high degree of superstition and many followers embrace anti-scientific attitudes when the conclusions of science refute or contradict the beliefs of revealed religion.  (This is a tendency, not a rule — for example, many believers in revealed religion do not regard a literal interpretation of the Garden of Eden story as central to their beliefs, and they fully accept the theory of evolution.)  Worse, revealed religions appear to be prone to intolerance, oppression of non-believers and heretics, and bloody religious wars.  It seems most likely that this intolerance is the result of a belief system that sees a single prophet as having a unique, infallible relationship to God, with all other religions being in error because they lack this relationship.

Philosophical religion, by contrast, emerges from a philosopher or philosophers engaging in dialogue.  In the West, this role was played by philosophers in ancient Greece and Rome, before their views were eclipsed by the rise of the revealed religion of Christianity.  In the East, philosophers were much more successful in establishing great religions.  In China, Confucius established a system of beliefs about morals and righteous behavior that influenced an entire empire, while Lao Tzu proposed that a mysterious power known as the “Tao” was the source and driving force behind everything.  In India, Hinduism originated as a diverse collection of beliefs by various philosophers, with some unifying themes, but no single creed.

As might be expected, philosophical religions have tended to be more tolerant and cosmopolitan than revealed religions.  Neither Greek nor Roman philosophers were inclined to kill each other over the finer points of Plato’s conception of God or the various schools of Stoicism, because no one ever claimed to have an infallible relationship with an omnipotent being.  In China, Confucianism, Taoism, and Buddhism are not regarded as incompatible, and many Chinese subscribe to elements of two or all three belief systems.  It is rare to ever see a religious war between adherents of philosophical religions.  And although many people automatically equate religion with faith, there is usually little or no role for faith in philosophical religions.

The role of God in philosophical religions is very different from the role of God in revealed religions.  Most philosophers, in east and west, defined God in impersonal terms, or proposed a God that was not omnipotent, or regarded a Creator God as unimportant to their belief system.  For example, Plato proposed that a secondary God known as a “demiurge” was responsible for creating the universe; the demiurge was not omnipotent, and was forced to create a less-than-perfect universe out of the imperfect materials he was given.  The Stoics did not subscribe to a personal God and instead proposed that a divine fire pervaded the universe, acting on matter to bring all things into accordance with reason.  Confucius, while not explicitly rejecting the possibility of God, did not discuss God in any detail, and had no role for divine powers in his teachings.  The Tao of Lao Tzu is regarded as a mysterious power underlying all things, but it is certainly not a personal being.  Finally, the concept of a Creator God is not central to Hinduism; in fact one of the six orthodox schools of Hinduism is explicitly atheistic, and has been for over two thousand years.

There are many virtues to philosophical religion.  While philosophical religion is not immune to the problem of incorrect conceptions and superstition, it does not resist reason and science, nor does it attempt to stamp out challenges to its claims to the same extent as revealed religions.  Philosophical religion is largely tolerant and reasonable.

However, there is also something arid and unsatisfying about many philosophical religions.  The claims of philosophical religion are usually modest, and philosophical religion has cool reason on its side.  But philosophical religion often does not have the emotional and imaginative content of revealed religion, and in these ways it is lacking. The emotional swings and imaginative leaps of revealed religion can be dangerous, but emotion and imagination are also essential to full knowledge and understanding (see here and here).  One cannot properly assign values to things and develop the right course of action without the emotions of love, joy, fear, anger, and sadness.  Without imagination, it is not possible to envision better ways of living.  When confronted with mystery, a leap of faith may be justified, or even required.

Abstractly, I have a great appreciation for philosophical religion, but in practice, I prefer Christianity.  I have the greatest admiration for the love of Christ, and I believe in Christian love as a guide for living.  At the same time, my Christianity is unorthodox and leavened with a generous amount of philosophy.  I question various doctrinal points of Christianity, I believe in evolution, and I don’t believe in miracles that violate the physical laws that have been discovered by science.  I think it would do the world good if revealed religions and philosophical religions recognized and borrowed each other’s virtues.