What Does Science Explain? Part 4 – The Ends of the Universe

Continuing my series of posts on “What Does Science Explain?” (parts 1, 2 , and 3 here), I wish today to discuss the role of teleological causation. Aristotle referred to teleology in his discussion of four causes as “final causation,” because it referred to the goals or ends of all things (the Greek word “telos” meaning “goal,” “purpose,” or “end.”) From a teleological viewpoint, an acorn grows into an oak tree, a bird takes flight, and a sculptor creates statues because these are the inherent and intended ends of the acorn, bird, and sculptor. Medieval metaphysics granted a large role for teleological causation in its view of the universe.

According to E.A. Burtt in The Metaphysics of Modern Science, the growth of modern science changed the idea of causation, focusing almost exclusively on efficient causation (objects impacting or affecting other objects). The idea of final (goal-oriented) causation was dismissed. And even though the early modern scientists such as Galileo and Newton believed in God, their notion of God was significantly different from the traditional medieval conception of God. Rather than seeing God as the Supreme Good, which continually draws all things to higher levels of being, early modern scientists reduced God to the First Efficient Cause, who merely started the mechanism of the universe and then let it run.

It was not unreasonable for early scientists to focus on efficient causation rather than final causation. It was often difficult to come up with testable hypotheses and workable predictive models by assuming long-term goals in nature. There was always a strong element of mystery about what the true ends of nature were and it was very difficult to pin down these alleged goals. Descartes believed in God, but also wrote that it was impossible to know what God’s goals were. For that reason, it is quite likely that science in its early stages needed to overcome medieval metaphysics in order to make its first great discoveries about nature. Focusing on efficient causation was simpler and apt to bring quicker results.

However, now that science has advanced over the centuries, it is worth revisiting the notion of teleological causation as a means of filling in gaps in our current understanding of nature. It is true that the concept of long-term goals for physical objects and forces often does not help very much in terms of developing useful, short-term predictive models. But final causation can help make sense of long-term patterns which may not be apparent when making observations over short periods of time. Processes that look purposeless and random in the short-term may actually be purposive in the long-term. We know that an acorn under the right conditions will eventually become an oak tree, because the process and the outcome of development can be observed within a reasonable period of time and that knowledge has been passed on to us. If our knowledge base began at zero and we came across an acorn for the first time, we would find it extremely difficult to predict the long-term future of that acorn merely by cutting it up and examining it under a microscope.

So, does the universe have long-term, goal-oriented patterns that may be hidden among the short-term realities of contingency and randomness? A number of physicists began to speculate that this was the case in the late twentieth century, when their research indicated that the physical forces and constants of the universe can exist in only a very narrow range of possibilities in order for life to be possible, or even for the universe to exist. Change in even one of the forces or constants could make life impossible or cause the universe to self-destruct in a short period of time. In this view, the evolution of the universe and of life on earth has been subject to a great deal of randomness, but the cosmic structure and conditions that made evolution possible are not at all random. As the physicist Freeman Dyson has noted:

It is true that we emerged in the universe by chance, but the idea of chance is itself only a cover for our ignorance. . . . The more I examine the universe and study the details of its architecture, the more evidence I find that the universe in some sense must have known that we were coming. (Disturbing the Universe, p. 250)

In what way did the universe “know we were coming?” Consider the fact that in the early universe after the Big Bang, the only elements that existed were the “light” elements hydrogen and helium, along with trace amounts of lithium and beryllium. A universe with only four elements would certainly be simple, but there would not be much to build upon. Life, at least as we know it, requires not just hydrogen but at a minimum carbon, oxygen, nitrogen, phosphorus, and sulfur. How did these and other heavier elements come into being? Stars produced them, through the process of fusion. In fact, stars have been referred to as the “factories” of heavy elements. Human beings today consist primarily of oxygen, followed by carbon, hydrogen, nitrogen, calcium, and phosphorous. Additional elements compose less than one percent of the human body, but even most of these elements are essential to human life. Without the elements produced earlier by stars we would not be here. It has been aptly said that human beings are made of “stardust.”

So why did stars create the heavier elements? After all, the universe could have gotten along quite well without additional elements. Was it random chance that created the heavy elements? Not really. Random chance plays a role in many natural events, but the creation of heavy elements in stars requires some precise conditions — it is not just a churning jumble of subatomic particles. The astronomer Fred Hoyle was the first scientist to study how stars made heavy elements, and he noted that the creation of heavy elements required very specific values in order for the process to work. When he concluded his research Hoyle remarked, “A common sense interpretation of the facts suggests that a superintellect has monkeyed with physics, as well as with chemistry and biology, and that there are no blind forces worth speaking about in nature. The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.”

The creation of heavier elements by the stars does not necessarily mean that the universe intended specifically to create human beings, but it does seem to indicate that the universe somehow “knew” that heavy elements would be required to create higher forms of being, above and beyond the simple and primitive elements created by the Big Bang. In that sense, creating life is plausibly a long-term goal of the universe.

And what about life itself? Does it make sense to use teleology to study the behavior of life forms? Biologist Peter Corning has argued that while science has long pursued reductionist explanations of phenomena, it is impossible to really know biological systems without pursuing holistic explanations centered on the purposive behavior of organisms.

According to reductionism, all things can be explained by the parts that they are made of — human beings are made of tissues and organs, which are made of cells, which are made of chemical compounds, which are made of atoms, which are made of subatomic particles. In the view of many scientists, everything about human beings can in principle be explained by actions at the subatomic level. Peter Corning, however, argues that this conception is mistaken. Reductionism is necessary for partially explaining biological systems, but it is not sufficient. The reason for this is that the wholes are greater than the parts, and the behavior of wholes often has characteristics that are radically different from the parts that they are made of. For example, it would be dangerous to add pure hydrogen or oxygen to a fire, but when hydrogen atoms and oxygen atoms are combined in the right way — as H2O — one obtains a chemical compound that is quite useful for extinguishing fires. The characteristics of the molecule are different from the characteristics of the atoms in it. Likewise, at the subatomic level, particles may have no definite position in space and can even be said to exist in multiple places at once; but human beings only exist in one place at a time, despite the fact that human beings are made of subatomic particles. The behavior of the whole is different from the behavior of the parts. The transformation of properties that occurs when parts form new wholes is known as “emergence.”

Corning notes that when one incorporates analysis of wholes into theoretical explanation, there is goal-oriented “downward causation” as well as “upward causation.” For example, a bird seeks the goal of food and a favorable environment, so when it begins to get cold, that bird flies thousands of miles to a warmer location for the winter. The atoms that make up that bird obviously go along for the ride, but a scientist can’t use the properties of the atoms to predict the flight of these atoms; only by looking at the properties of the bird as a whole can a scientist predict what the atoms making up the bird are going to do. The bird as a whole doesn’t have complete control over the atoms composing its body, but it clearly has some control. Causation goes down as well as up. Likewise, neuropsychologist Roger Sperry has argued that human consciousness is a whole that influences the parts of the brain and body just as the parts of the brain and body influence the consciousness: “[W]e contend that conscious or mental phenomena are dynamic, emergent, pattern (or configurational) properties of the living brain in action . . . these emergent pattern properties in the brain have causal control potency. . . ” (“Mind, Brain, and Humanist Values,” Bulletin of the Atomic Scientists, Sept 1966) In Sperry’s view, the values created by the human mind influence human behavior as much as the atoms and chemicals in the human body and brain.

Science has traditionally viewed the evolution of the universe as upward causation only, with smaller parts joining into larger wholes as a result of the laws of nature and random chance. This view of causation is illustrated in the following diagram:

reductionism

But if we take seriously the notion of emergence and purposive action, we have a more complex picture, in which the laws of nature and random chance constrain purposive action and life forms, but do not entirely determine the actions of life forms — i.e., there is both upward and downward causation:

reductionism_and_holism

It is important to note that this new view of causation does not eliminate the laws of nature — it just sets limits on what the laws of nature can explain. Specifically, the laws of nature have their greatest predictive power when we are dealing with the simplest physical phenomena; the complex wholes that are formed by the evolutionary process are less predictable because they can to some extent work around the laws of nature by employing the new properties that emerge from the joining of parts. For example, it is relatively easy to predict the motion of objects in the solar system by using the laws of nature; it is not so easy to predict the motion of life forms because life forms have properties that go beyond the simple properties possessed by objects in the solar system. As Robert Pirsig notes in Lila, life can practically be defined by its ability to transcend or work around the static patterns of the laws of nature:

The law of gravity . . . is perhaps the most ruthlessly static pattern of order in the universe. So, correspondingly, there is no single living thing that does not thumb its nose at that law day in and day out. One could almost define life as the organized disobedience of the law of gravity. One could show that the degree to which an organism disobeys this law is a measure of its degree of evolution. Thus, while the single protozoa just barely get around on their cilia, earthworms manage to control their distance and direction, birds fly into the sky, and man goes all the way to the moon. (Lila (1991), p. 143.

Many scientists still resist the notion of teleological causation. But it could be argued that even scientists who vigorously deny that there is any purpose in the universe actually have an implicit teleology. Their teleology is simply the “laws of nature” themselves, and either the inner goal of all things is to follow those laws, or it is the goal of the laws to compel all things to follow their commands. Other implicit teleologies can be found in scientists’ assumptions that nature is inherently simple; that mathematics is the language of nature; or that all the particles and forces in the nature play some necessary role. According to physicist Paul Davies,

There is . . . an unstated but more or less universal feeling among physicists that everything that exists in nature must have a ‘place’ or a role as part of some wider scheme, that nature should not indulge in profligacy by manifesting gratuitous entities, that nature should not be arbitrary. Each facet of physical reality should link in with the others in a ‘natural’ and logical way. Thus, when the particle known as the muon was discovered in 1937, the physicist Isidor Rabi was astonished. ‘Who ordered that?’ he exclaimed. (Paul Davies, The Mind of God: The Scientific Basis for a Rational World, pp. 209-10.

Ultimately, however, one cannot fully discuss the goals or ends of the universe without exploring the notion of Ideal Forms — that is, a blueprint for all things to follow or aspire to. The subject of Ideal Forms will be discussed in my next post.

2 thoughts on “What Does Science Explain? Part 4 – The Ends of the Universe

  1. Pingback: What Does Science Explain? Part 5 – The Ghostly Forms of Physics | Mythos/Logos

  2. Pingback: What Does Science Explain? Part 3 – The Mythos of Objectivity | Mythos/Logos

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s